-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTraining.py
208 lines (178 loc) · 8.98 KB
/
Training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import torch
import torch.nn.functional as F
import numpy as np
from datetime import datetime
from torchvision.utils import make_grid
from lib.PraNet_Res2Net import PraNet
from utils.data import get_loader, test_dataset
from utils.utils import clip_gradient, adjust_lr
from tensorboardX import SummaryWriter
import logging
import torch.backends.cudnn as cudnn
# loss function from F3Net'AAAI'2020
def structure_loss(pred, mask):
weit = 1 + 5 * torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask) * weit).sum(dim=(2, 3))
union = ((pred + mask) * weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1) / (union - inter + 1)
return (wbce + wiou).mean()
# train function
def train(train_loader, model, optimizer, epoch, save_path, writer):
global step
model.train()
loss_all = 0
epoch_step = 0
try:
for i, (images, gts) in enumerate(train_loader, start=1):
optimizer.zero_grad()
images = images.cuda()
gts = gts.cuda()
preds = model(images)
loss_init = structure_loss(preds[0], gts) + structure_loss(preds[1], gts) + structure_loss(preds[2], gts)
loss_final = structure_loss(preds[3], gts)
loss = loss_init + loss_final
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
step += 1
epoch_step += 1
loss_all += loss.data
if i % 20 == 0 or i == total_step or i == 1:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Total_loss: {:.4f} Loss1: {:.4f} Loss2: {:0.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss.data, loss_init.data,
loss_final.data))
logging.info(
'[Train Info]:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Total_loss: {:.4f} Loss1: {:.4f} '
'Loss2: {:0.4f}'.
format(epoch, opt.epoch, i, total_step, loss.data, loss_init.data, loss_final.data))
# TensorboardX-Loss
writer.add_scalars('Loss_Statistics',
{'Loss_init': loss_init.data, 'Loss_final': loss_final.data,
'Loss_total': loss.data},
global_step=step)
# TensorboardX-Training Data
grid_image = make_grid(images[0].clone().cpu().data, 1, normalize=True)
writer.add_image('RGB', grid_image, step)
grid_image = make_grid(gts[0].clone().cpu().data, 1, normalize=True)
writer.add_image('GT', grid_image, step)
# TensorboardX-Outputs
res = preds[0][0].clone()
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
writer.add_image('Pred_init', torch.tensor(res), step, dataformats='HW')
res = preds[3][0].clone()
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
writer.add_image('Pred_final', torch.tensor(res), step, dataformats='HW')
loss_all /= epoch_step
logging.info('[Train Info]: Epoch [{:03d}/{:03d}], Loss_AVG: {:.4f}'.format(epoch, opt.epoch, loss_all))
writer.add_scalar('Loss-epoch', loss_all, global_step=epoch)
if epoch % 50 == 0:
torch.save(model.state_dict(), save_path + 'Net_epoch_{}.pth'.format(epoch))
except KeyboardInterrupt:
print('Keyboard Interrupt: save model and exit.')
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save(model.state_dict(), save_path + 'Net_epoch_{}.pth'.format(epoch + 1))
print('Save checkpoints successfully!')
raise
# test_in_train function
def val(test_loader, model, epoch, save_path, writer):
global best_mae, best_epoch
model.eval()
with torch.no_grad():
mae_sum = 0
for i in range(test_loader.size):
image, gt, name, img_for_post = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
res = model(image)
res = F.upsample(res[3], size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
mae_sum += np.sum(np.abs(res - gt)) * 1.0 / (gt.shape[0] * gt.shape[1])
mae = mae_sum / test_loader.size
writer.add_scalar('MAE', torch.tensor(mae), global_step=epoch)
print('Epoch: {}, MAE: {}, bestMAE: {}, bestEpoch: {}.'.format(epoch, mae, best_mae, best_epoch))
if epoch == 1:
best_mae = mae
else:
if mae < best_mae:
best_mae = mae
best_epoch = epoch
torch.save(model.state_dict(), save_path + 'Net_epoch_best.pth')
print('Save state_dict successfully! Best epoch:{}.'.format(epoch))
logging.info(
'[Val Info]:Epoch:{} MAE:{} bestEpoch:{} bestMAE:{}'.format(epoch, mae, best_epoch, best_mae))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=100, help='epoch number')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=36, help='training batch size')
parser.add_argument('--trainsize', type=int, default=352, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate')
parser.add_argument('--load', type=str, default=None, help='train from checkpoints')
parser.add_argument('--gpu_id', type=str, default='1', help='train use gpu')
parser.add_argument('--train_root', type=str, default='./data/TrainDataset/Kvasir-SEG/',
help='the training rgb images root')
parser.add_argument('--val_root', type=str, default='./data/ValDataset/Kvasir-SEG/',
help='the test rgb images root')
parser.add_argument('--save_path', type=str,
default='./snapshot/',
help='the path to save model and log')
opt = parser.parse_args()
# set the device for training
if opt.gpu_id == '0':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print('USE GPU 0')
elif opt.gpu_id == '1':
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
print('USE GPU 1')
cudnn.benchmark = True
# build the model
model = PraNet(channel=32).cuda()
if opt.load is not None:
model.load_state_dict(torch.load(opt.load))
print('load model from ', opt.load)
optimizer = torch.optim.Adam(model.parameters(), opt.lr)
save_path = opt.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
# load data
print('load data...')
train_loader = get_loader(image_root=opt.train_root + 'images/',
gt_root=opt.train_root + 'masks/',
batchsize=opt.batchsize,
trainsize=opt.trainsize,
num_workers=8)
val_loader = test_dataset(image_root=opt.val_root + 'images/',
gt_root=opt.val_root + 'masks/',
testsize=opt.trainsize)
total_step = len(train_loader)
# logging
logging.basicConfig(filename=save_path + 'log.log',
format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
level=logging.INFO, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("Network-Train")
logging.info("Config")
logging.info('epoch: {}; lr: {}; batchsize: {}; trainsize: {}; clip: {}; decay_rate: {}; load: {}; '
'save_path: {}; decay_epoch: {}'.format(opt.epoch, opt.lr, opt.batchsize, opt.trainsize, opt.clip,
opt.decay_rate, opt.load, save_path, opt.decay_epoch))
step = 0
writer = SummaryWriter(save_path + 'summary')
best_mae = 1
best_epoch = 0
print("Start train...")
for epoch in range(1, opt.epoch):
cur_lr = adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
writer.add_scalar('learning_rate', cur_lr, global_step=epoch)
train(train_loader, model, optimizer, epoch, save_path, writer)
val(val_loader, model, epoch, save_path, writer)