-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-vae.py
201 lines (178 loc) · 7.22 KB
/
run-vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
from torch.utils.data import dataloader
import yaml
import torch
import argparse
import logging
import numpy as np
from tqdm import tqdm
from utils.logger import ColoredLogger
from utils.builder import dataloader_builder, vae_builder, optimizer_builder, lr_scheduler_builder
from utils.dataset import get_dataset_size
import torchvision.utils as tuitls
logging.setLoggerClass(ColoredLogger)
logger = logging.getLogger(__name__)
# Parse Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--mode', '-m', default = 'train', help = 'the running mode, "train" or "inference"', type = str)
parser.add_argument('--cfg', '-c', default = os.path.join('configs', 'VAE.yaml'), help = 'Config File', type = str)
FLAGS = parser.parse_args()
CFG_FILE = FLAGS.cfg
MODE = FLAGS.mode
if MODE not in ['train', 'inference']:
raise AttributeError('mode should be either "train" or "inference".')
with open(CFG_FILE, 'r') as cfg_file:
cfg_dict = yaml.load(cfg_file, Loader=yaml.FullLoader)
model_params = cfg_dict.get('model', {})
dataset_params = cfg_dict.get('dataset', {})
optimizer_params = cfg_dict.get('optimizer', {})
lr_scheduler_params = cfg_dict.get('lr_scheduler', {})
trainer_params = cfg_dict.get('trainer', {})
inferencer_params = cfg_dict.get('inferencer', {})
stats_params = cfg_dict.get('stats', {})
logger.info('Building Models ...')
model = vae_builder(model_params)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
logger.info('Building dataloaders ...')
train_dataloader = dataloader_builder(dataset_params, split = 'train')
test_dataloader = dataloader_builder(dataset_params, split = 'test')
extra_dataloader = dataloader_builder(dataset_params, split = 'extra')
logger.info('Building optimizer and learning rate scheduler ...')
optimizer = optimizer_builder(model, optimizer_params)
lr_scheduler = lr_scheduler_builder(optimizer, lr_scheduler_params)
logger.info('Checking checkpoints ...')
start_epoch = 0
max_epoch = trainer_params.get('max_epoch', 50)
stats_dir = os.path.join(stats_params.get('stats_dir', 'stats'), stats_params.get('stats_folder', 'temp'))
if os.path.exists(stats_dir) == False:
os.makedirs(stats_dir)
checkpoint_file = os.path.join(stats_dir, 'checkpoint.tar')
if os.path.isfile(checkpoint_file):
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint['model_state_dict'])
start_epoch = checkpoint['epoch']
if lr_scheduler is not None:
lr_scheduler.last_epoch = start_epoch - 1
logger.info("Checkpoint {} (epoch {}) loaded.".format(checkpoint_file, start_epoch))
elif MODE == "inference":
raise AttributeError('There should be a checkpoint file for inference.')
batch_size = dataset_params.get('batch_size', 64)
total_train_samples = get_dataset_size(dataset_params.get('path', 'data'), 'train')
total_test_samples = get_dataset_size(dataset_params.get('path', 'data'), 'test')
total_extra_samples = get_dataset_size(dataset_params.get('path', 'data'), 'extra')
def train_one_epoch(epoch, extra = False):
logger.info('Start training process in epoch {}.'.format(epoch + 1))
model.train()
losses = []
if extra:
dataloader = extra_dataloader
else:
dataloader = train_dataloader
with tqdm(dataloader) as pbar:
for data in pbar:
optimizer.zero_grad()
x, labels = data
x = x.to(device)
labels = labels.to(device)
res = model(x, labels = labels)
loss_dict = model.loss(
*res,
kl_weight = batch_size / total_train_samples,
batch_size = batch_size,
dataset_size = total_train_samples
)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
pbar.set_description('Epoch {}, loss: {:.8f}'.format(epoch + 1, loss.item()))
losses.append(loss)
mean_loss = torch.stack(losses).mean()
logger.info('Finish training process in epoch {}, mean training loss: {:.8f}.'.format(epoch + 1, mean_loss))
def test_one_epoch(epoch):
logger.info('Start evaluation process in epoch {}.'.format(epoch + 1))
model.eval()
losses = []
with tqdm(test_dataloader) as pbar:
for data in pbar:
x, labels = data
x = x.to(device)
labels = labels.to(device)
with torch.no_grad():
res = model(x, labels = labels)
loss_dict = model.loss(
*res,
kl_weight = batch_size / total_test_samples,
batch_size = batch_size,
dataset_size = total_test_samples
)
loss = loss_dict['loss']
pbar.set_description('Eval epoch {}, loss: {:.8f}'.format(epoch + 1, loss.item()))
losses.append(loss)
mean_loss = torch.stack(losses).mean()
logger.info('Finish evaluation process in epoch {}, mean evaluation loss: {:.8f}'.format(epoch + 1, mean_loss))
return mean_loss
def inference(epoch = -1):
suffix = ""
if 0 <= epoch < max_epoch:
logger.info('Begin inference on checkpoint of epoch {} ...'.format(epoch + 1))
suffix = "epoch_{}".format(epoch)
else:
logger.info('Begin inference ...')
x, labels = next(iter(test_dataloader))
x = x.to(device)
labels = labels.to(device)
with torch.no_grad():
recon = model.reconstruct(x, labels = labels)
nrow = int(np.ceil(np.sqrt(batch_size)))
reconstructed_dir = os.path.join(stats_dir, 'reconstructed_images')
generated_dir = os.path.join(stats_dir, 'generated_images')
if os.path.exists(reconstructed_dir) == False:
os.makedirs(reconstructed_dir)
if os.path.exists(generated_dir) == False:
os.makedirs(generated_dir)
tuitls.save_image(
x.data,
os.path.join(reconstructed_dir, "original_{}.png".format(suffix)),
normalize = True,
nrow = nrow
)
tuitls.save_image(
recon.data,
os.path.join(reconstructed_dir, "reconstructed_{}.png".format(suffix)),
normalize = True,
nrow = nrow
)
sample_num = inferencer_params.get('sample_num', 144)
nrow = int(np.ceil(np.sqrt(sample_num)))
with torch.no_grad():
samples = model.sample(sample_num, device, labels = labels)
tuitls.save_image(
samples.data,
os.path.join(generated_dir, "generated_{}.png".format(suffix)),
normalize = True,
nrow = nrow
)
logger.info('Finish inference successfully.')
def train(start_epoch):
global cur_epoch
for epoch in range(start_epoch, max_epoch):
cur_epoch = epoch
logger.info('--> Epoch {}/{}'.format(epoch + 1, max_epoch))
train_one_epoch(epoch)
if trainer_params.get('extra', False):
train_one_epoch(epoch, extra = True)
loss = test_one_epoch(epoch)
if lr_scheduler is not None:
lr_scheduler.step()
save_dict = {
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
}
torch.save(save_dict, os.path.join(stats_dir, 'checkpoint.tar'))
inference(epoch)
if __name__ == '__main__':
if MODE == "train":
train(start_epoch)
else:
inference()