-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSupporting algorithm 5 (VB).bas
49 lines (39 loc) · 1.99 KB
/
Supporting algorithm 5 (VB).bas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Attribute VB_Name = "Module1"
'##############################################################################################
'# John Wiley & Sons, Inc. #
'# #
'# Book: Markov Chains: From Theory To Implementation And Experimentation #
'# Author: Dr. Paul Gagniuc #
'# Data: 01/09/2016 #
'# #
'# Description: #
'# Supporting algorithm 5. Step-by-step prediction for 50 discreet steps. #
'# A probability vector is repeatedly multiplied by a 2x2 transition matrix. #
'# The vectors obtained from these repeated multiplications show the probability #
'# of each outcome on a particular step. Furthermore, at every cycle the old vector #
'# is compared to the new vector in order to detect the first occurrence of #
'# equilibrium, namely the steady state vector. #
'##############################################################################################
Private Sub main()
Dim P(1 To 2, 1 To 2) As Variant
Dim v(0 To 1) As Variant
chain = 50
P(1, 1) = 0.2
P(1, 2) = 0.625
P(2, 1) = 0.8
P(2, 2) = 0.375
v(0) = 1
v(1) = 0
For i = 1 To chain
x = (v(0) * P(1, 1)) + (v(1) * P(1, 2))
y = (v(0) * P(2, 1)) + (v(1) * P(2, 2))
If v(0) = x And v(1) = y Then
MsgBox "Steady state vector at day [" & i & "]!"
Exit Sub
Else
MsgBox "Day[" & i & "], v=[" & x & " | " & y & "]"
End If
v(0) = x
v(1) = y
Next i
End Sub