-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSupporting algorithm 16 (VB).bas
84 lines (66 loc) · 2.59 KB
/
Supporting algorithm 16 (VB).bas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Attribute VB_Name = "Module1"
'##############################################################################################
'# John Wiley & Sons, Inc. #
'# #
'# Book: Markov Chains: From Theory To Implementation And Experimentation #
'# Author: Dr. Paul Gagniuc #
'# Data: 01/09/2016 #
'# #
'# Description: #
'# Supporting algorithm 16. Transition probability tester. Previously, a sequence #
'# of observations has been provided by a simulator. To test the accuracy of the #
'# simulator, the sequence of observations is used for creating a transition matrix, #
'# which is then compared with the original. #
'##############################################################################################
Dim P(1 To 4, 1 To 4) As String
Private Sub main()
Call ExtractProb("BABABDCBABDCBCBDCBDCBABDCBCBCBCBDCBCBDCBDCBDCBABA" & _
"BABDCBDCBABABDCBABCBABCBABDCBDCBABABABABCBABCBDCBDC")
For i = 1 To 4
For j = 1 To 4
z = z & Chr(9) & Round(P(i, j), 2)
Next j
z = z & vbCrLf
Next i
MsgBox z
End Sub
Function ExtractProb(ByVal s As String)
Ea = "A"
Eb = "B"
Ec = "C"
Ed = "D"
For i = 1 To 4
For j = 1 To 4
P(i, j) = 0
Next j
Next i
Ta = 0
Tb = 0
Tc = 0
Td = 0
For i = 2 To Len(s) - 1
DI1 = Mid(s, i, 1)
DI2 = Mid(s, i + 1, 1)
If DI1 = Ea Then r = 1
If DI1 = Eb Then r = 2
If DI1 = Ec Then r = 3
If DI1 = Ed Then r = 4
If DI2 = Ea Then c = 1
If DI2 = Eb Then c = 2
If DI2 = Ec Then c = 3
If DI2 = Ed Then c = 4
P(r, c) = Val(P(r, c)) + 1
If DI1 = Ea Then Ta = Ta + 1
If DI1 = Eb Then Tb = Tb + 1
If DI1 = Ec Then Tc = Tc + 1
If DI1 = Ed Then Td = Td + 1
Next i
For i = 1 To 4
For j = 1 To 4
If i = 1 Then P(i, j) = Val(P(i, j)) / Ta
If i = 2 Then P(i, j) = Val(P(i, j)) / Tb
If i = 3 Then P(i, j) = Val(P(i, j)) / Tc
If i = 4 Then P(i, j) = Val(P(i, j)) / Td
Next j
Next i
End Function