-
Notifications
You must be signed in to change notification settings - Fork 2
/
sice_lib.py
672 lines (523 loc) · 22.1 KB
/
sice_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 14 16:58:31 2019
Update 07032019
pySICE library
contains:
alb2rtoa calculates TOA reflectance from surface albedo
salbed calculates ratm for albedo correction (?)
zbrent equation solver
quad_func calculation of quadratic parameters
funp snow spectral planar and spherical albedo function
requires:
constants.py contains constants needed to run the functions below
This code retrieves snow/ice albedo and related snow products for clean Arctic
atmosphere. The errors increase with the load of pollutants in air.
Alexander KOKHANOVSKY
a.kokhanovsky@vitrocisetbelgium.com
Translated to python by Baptiste Vandecrux (bav@geus.dk)
@author: bav@geus.dk
"""
# pySICEv1.4
#
# from FORTRAN VERSION 5
# March 31, 2020
#
# Latest update of python scripts: 29-04-2020 (bav@geus.dk)
# - Fixed a bug in the indexing of the polluted pixels for which the spherical albedo equation could not be solved. Solved the oultiers visible in bands 12-15 and 19-20 and expended the BBA calculation to few pixels that fell out of the index.
# -compression of output
# - new backscatter fraction from Alex
# - new format for tg_vod.dat file
# **************************************************
# Inputs:
# toa_cor_o3[i_channel] spectral OLCI TOA reflectance at 21 channels (R=pi*I_reflec/cos(SZA)/E_0)
#
# Outputs:
# snow characteristics:
# isnow 0 = clean snow, 1 = polluted snow
# ntype pollutant type: 1(soot), 2( dust), 3 and 4 (other or mixture)
# conc pollutant concentration is defined as the volumetric concentration
# of pollutants devided by the volumetric concentration of ice grains
# bf normalized absorption coefficient of pollutants ay 1000nm ( in inverse mm)
# bm Angstroem absorption coefficient of pollutants ( around 1 - for soot, 3-7 for dust)
#
# alb_sph(i),i=1,21) spherical albedo
# (rp(i),i=1,21) planar albedo
# (refl(i),i=1,21) relfectance (boar)
#
# D diamater of grains(mm)
# area specific surface area (kg/m/m)
# al effective absorption length(mm)
# r0 reflectance of a semi-infinite non-absorbing snow layer
#
# plane BroadBand Albedo (BBA)
# rp1 visible(0.3-0.7micron)
# rp2 near-infrared (0.7-2.4micron)
# rp3 shortwave(0.3-2.4 micron)shortwave(0.3-2.4 micron)
#
# spherical BBA
# rs1 visible(0.3-0.7micron)
# rs2 near-infrared (0.7-2.4micron)
# rs3 shortwave(0.3-2.4 micron)shortwave(0.3-2.4 micron)
#
# Constants required:
# xa, ya ice refractive index ya at wavelength xa
# w OLCI channels
# bai Imaginary part of ice refrative index at OLCI channels
#
# Functions required:
# alb2rtoa calculates TOA reflectance from surface albedo
# salbed calculates ratm for albedo correction (?)
# zbrent equation solver
# sol solar spectrum
# analyt_func calculation of surface radiance
# quad_func calculation of quadratic parameters
# funp snow spectral planar and spherical albedo function
import numpy as np
from constants import w, bai, xa, ya, f0, f1, f2, bet, gam, coef1, coef2, coef3, coef4
# %% ================================================
# tozon [i_channel] spectral ozone vertical optical depth at the fixed ozone concentration 404.59DU ( wavelength, VOD)
# voda[i_channel] spectral water vapour vertical optical depth at the fixed concentration 3.847e+22 molecules per square sm
# Outputs:
# Ozone retrieval:
# BXXX retrieved total ozone from OLCI measurements
# totadu ECMWF total column ozone in Dobson Unit
# toa_cor_03 ozone-corrected OLCI toa relfectances
def ozone_scattering(ozone, tozon, sza, vza, toa):
scale = np.arccos(-1.) / 180. # rad per degree
eps = 1.55
# ecmwf ozone from OLCI file (in Kg.m-2) to DOBSON UNITS
# 1 kg O3 / m2 = 46696.24 DOBSON Unit (DU)
totadu = 46729. * ozone
amf = 1. / np.cos(sza * scale) + 1. / np.cos(vza * scale)
BX = (toa[20,:,:]**(1. - eps)) * (toa[16,:,:]**eps) / toa[6,:,:]
BXXX = np.log(BX) / 1.11e-4 / amf
BXXX[BXXX > 500] = 999
BXXX[BXXX < 0] = 999
# Correcting TOA reflectance for ozone and water scattering
# bav 09-02-2020: now water scattering not accounted for
# kg/m**2. transfer to mol/cm**2
# roznov = 2.99236e-22 # 1 moles Ozone = 47.9982 grams
# water vapor optical depth
# vap = water/roznov
# AKOWAT = vap/3.847e+22# tvoda = np.exp(amf*voda*AKOWAT)
tvoda = tozon * 0 + 1
toa_cor_o3 = toa * np.nan
for i in range(21):
toa_cor_o3[i, :, :] = toa[i, :, :] * tvoda[i] \
* np.exp(amf * tozon[i] * totadu / 404.59)
return BXXX, toa_cor_o3
# %% viewing characteristics and aerosol properties
# sza solar zenith angle
# vza viewing zenith angle
# saa solar azimuthal angle
# vaa viewing azimuthal angle
# raa Relative azimuth angle
# aot threshold value on aerosol optical thickness (aot) at 500nm
# height height of underlying surface(meters)
def view_geometry(vaa, saa, sza, vza, aot, height):
# transfer of OLCI relative azimuthal angle to the definition used in
# radiative transfer code
raa = 180. - (vaa - saa)
as1 = np.sin(sza * np.pi / 180.)
as2 = np.sin(vza * np.pi / 180.)
am1 = np.cos(sza * np.pi / 180.)
am2 = np.cos(vza * np.pi / 180.)
ak1 = 3. * (1. + 2. * am1) / 7.
ak2 = 3. * (1. + 2. * am2) / 7.
cofi = np.cos(raa * np.pi / 180.)
amf = 1. / am1 + 1. / am2
co = -am1 * am2 + as1 * as2 * cofi
return raa, am1, am2, ak1, ak2, amf, co
# %%
def aerosol_properties(aot, height, co):
# Atmospheric optical thickness
tauaer = aot * (w / 0.5) ** (-1.3)
ad = height / 7400.
ak = height * 0 + 1
ak[ad > 1.e-6] = np.exp(-ad[ad > 1.e-6])
taumol = np.tile(height * np.nan, (21, 1, 1))
tau = np.tile(height * np.nan, (21, 1, 1))
g = np.tile(height * np.nan, (21, 1, 1))
pa = np.tile(height * np.nan, (21, 1, 1))
p = np.tile(height * np.nan, (21, 1, 1))
g0 = 0.5263
g1 = 0.4627
wave0 = 0.4685
gaer = g0 + g1 * np.exp(-w / wave0)
pr = 0.75 * (1. + co ** 2)
for i in range(21):
taumol[i, :, :] = ak * 0.00877 / w[i] ** (4.05)
tau[i, :, :] = tauaer[i] + taumol[i, :, :]
# aerosol asymmetry parameter
g[i, :, :] = tauaer[i] * gaer[i] / tau[i, :, :]
# HG phase function for aerosol
pa[i, :, :] = (1 - g[i, :, :] ** 2) \
/ (1. - 2. * g[i, :, :] * co + g[i, :, :] ** 2) ** 1.5
p[i, :, :] = (taumol[i, :, :] * pr + tauaer[i] * pa[i, :, :]) / tau[i, :, :]
return tau, p, g, gaer, taumol, tauaer
# %% snow properties
def snow_properties(toa, ak1, ak2):
# retrieval of snow properties ( R_0, size of grains from OLCI channels 865[17] and 1020nm[21]
# assumed not influenced by atmospheric scattering and absorption processes)
akap2 = 2.25e-6
alpha2 = 4. * np.pi * akap2 / 1.020
eps = 1.549559365010611
# reflectivity of nonabsorbing snow layer
rr1 = toa[16, :, :]
rr2 = toa[20, :, :]
r0 = (rr1 ** eps) * (rr2 ** (1. - eps))
# effective absorption length(mm)
bal = np.log(rr2 / r0) * np.log(rr2 / r0) / alpha2 / (ak1 * ak2 / r0) ** 2
al = bal / 1000.
# effective grain size(mm):diameter
D = al / 16.36
# snow specific area ( dimension: m*m/kg)
area = 6. / D / 0.917
return D, area, al, r0, bal
# %% =================================================
def prepare_coef(tau, g, p, am1, am2, amf, gaer, taumol, tauaer):
astra = tau * np.nan
rms = tau * np.nan
t1 = tau * np.nan
t2 = tau * np.nan
# SOBOLEV
oskar = 4. + 3. * (1. - g) * tau
b1 = 1. + 1.5 * am1 + (1. - 1.5 * am1) * np.exp(-tau / am1)
b2 = 1. + 1.5 * am2 + (1. - 1.5 * am2) * np.exp(-tau / am2)
wa1 = 1.10363
wa2 = -6.70122
wx0 = 2.19777
wdx = 0.51656
bex = np.exp((g - wx0) / wdx)
sssss = (wa1 - wa2) / (1. + bex) + wa2
for i in range(21):
astra[i, :, :] = (1. - np.exp(-tau[i, :, :] * amf)) / (am1 + am2) / 4.
rms[i, :, :] = 1. - b1[i, :, :] * b2[i, :, :] / oskar[i, :, :] \
+ (3. * (1. + g[i, :, :]) * am1 * am2 - 2. * (am1 + am2)) * astra[i, :, :]
# backscattering fraction
# t1[i, :, :] = np.exp(-(1. - g[i, :, :]) * tau[i, :, :] / am1 / 2.)
# t2[i, :, :] = np.exp(-(1. - g[i, :, :]) * tau[i, :, :] / am2 / 2.)
t1[i, :, :] = np.exp(-(1. - g[i, :, :]) * tau[i, :, :] / am1 / 2.
/ sssss[i, :, :])
t2[i, :, :] = np.exp(-(1. - g[i, :, :]) * tau[i, :, :] / am2 / 2.
/ sssss[i, :, :])
rss = p * astra
r = rss + rms
# SALBED
# ratm = salbed(tau, g)
a_s = (.18016, -0.18229, 0.15535, -0.14223)
bs = (.58331, -0.50662, -0.09012, 0.0207)
cs = (0.21475, -0.1, 0.13639, -0.21948)
als = (0.16775, -0.06969, 0.08093, -0.08903)
bets = (1.09188, 0.08994, 0.49647, -0.75218)
a_cst = a_s[0] * g ** 0 + a_s[1] * g ** 1 + a_s[2] * g ** 2 + a_s[3] * g ** 3
b_cst = bs[0] * g ** 0 + bs[1] * g ** 1 + bs[2] * g ** 2 + bs[3] * g ** 3
c_cst = cs[0] * g ** 0 + cs[1] * g ** 1 + cs[2] * g ** 2 + cs[3] * g ** 3
al_cst = als[0] * g ** 0 + als[1] * g ** 1 + als[2] * g ** 2 + als[3] * g ** 3
bet_cst = bets[0] * g ** 0 + bets[1] * g ** 1 + bets[2] * g ** 2 + bets[3] * g ** 3
ratm = tau * (a_cst * np.exp(-tau / al_cst) + b_cst * np.exp(-tau / bet_cst)
+ c_cst)
return t1, t2, ratm, r, astra, rms
# %% snow_imputirities
def snow_impurities(alb_sph, bal):
# analysis of snow impurities
# ( the concentrations below 0.0001 are not reliable )
# bf normalized absorption coefficient of pollutants ay 1000nm ( in inverse mm)
# bm Angstroem absorption coefficient of pollutants ( around 1 - for soot, 3-7 for dust)
bm = np.nan * bal
bf = bm
p1 = bm
p2 = bm
ind_nonan = np.logical_and(np.logical_not(np.isnan(alb_sph[0, :, :])),
np.logical_not(np.isnan(alb_sph[1, :, :])))
p1[ind_nonan] = np.log(alb_sph[0, ind_nonan]) * np.log(alb_sph[0, ind_nonan])
p2[ind_nonan] = np.log(alb_sph[1, ind_nonan]) * np.log(alb_sph[1, ind_nonan])
bm[ind_nonan] = np.log(p1[ind_nonan] / p2[ind_nonan]) / np.log(w[1] / w[0])
# type of pollutants
ntype = np.nan * bal
ntype[bm <= 1.2] = 1 # soot
ntype[bm > 1.2] = 2 # dust
soda = bm * np.nan
soda[bm >= 0.1] = (w[0]) ** bm[bm >= 0.1]
bf = soda * p1 / bal
# normalized absorption coefficient of pollutants at the wavelength 1000nm
bff = p1 / bal
# bal -effective absorption length in microns
BBBB = 1.6 # enhancement factors for soot
FFFF = 0.9 # enhancement factors for ice grains
alfa = 4. * np.pi * 0.47 / w[0] # bulk soot absorption coefficient at 1000nm
DUST = 0.01 # volumetric absorption coefficient of dust
conc = bal * np.nan
conc[ntype == 1] = BBBB * bff[ntype == 1] / FFFF / alfa
conc[ntype == 2] = BBBB * bff[ntype == 2] / DUST
ntype[bm <= 0.5] = 3 # type is other or mixture
ntype[bm >= 10.] = 4 # type is other or mixture
return ntype, bf, conc
# %% ===========================================================================
def alb2rtoa(a, t1, t2, r0, ak1, ak2, ratm, r):
# Function that calculates the theoretical reflectance from a snow spherical albedo a
# This function can then be solved to find optimal snow albedo
# Inputs:
# a Surface albedo
# r0 reflectance of a semi-infinite non-absorbing snow layer
#
# Outputs:
# rs surface reflectance at specific channel
surf = t1 * t2 * r0 * a ** (ak1 * ak2 / r0) / (1 - a * ratm)
rs = r + surf
return rs
# %% ===========================================================================
def salbed(tau, g):
# WARNING: NOT USED ANYMORE
# SPHERICAL ALBEDO OF TERRESTRIAL ATMOSPHERE:
# bav: replaced as by a_s
# inputs:
# tau directional albedo ?
# g asymetry coefficient
# outputs:
# salbed spherical albedo
a_s = (.18016, -0.18229, 0.15535, -0.14223)
bs = (.58331, -0.50662, -0.09012, 0.0207)
cs = (0.21475, -0.1, 0.13639, -0.21948)
als = (0.16775, -0.06969, 0.08093, -0.08903)
bets = (1.09188, 0.08994, 0.49647, -0.75218)
a = a_s[0] * g ** 0 + a_s[1] * g ** 1 + a_s[2] * g ** 2 + a_s[3] * g ** 3
b = bs[0] * g ** 0 + bs[1] * g ** 1 + bs[2] * g ** 2 + bs[3] * g ** 3
c = cs[0] * g ** 0 + cs[1] * g ** 1 + cs[2] * g ** 2 + cs[3] * g ** 3
al = als[0] * g ** 0 + als[1] * g ** 1 + als[2] * g ** 2 + als[3] * g ** 3
bet = bets[0] * g ** 0 + bets[1] * g ** 1 + bets[2] * g ** 2 + bets[3] * g ** 3
salbed = tau * (a * np.exp(-tau / al) + b * np.exp(-tau / bet) + c)
return salbed
# %% =====================================================================
def zbrent(f, x0, x1, max_iter=100, tolerance=1e-6):
# Equation solver using Brent's method
# https://en.wikipedia.org/wiki/Brent%27s_method
# Brent’s is essentially the Bisection method augmented with Inverse
# Quadratic Interpolation whenever such a step is safe. At it’s worst case
# it converges linearly and equal to Bisection, but in general it performs
# superlinearly; it combines the robustness of Bisection with the speedy
# convergence and inexpensive computation of Quasi-Newtonian methods.
# Because of this, you’re likely to find Brent’s as a default root-finding
# algorithm in popular libraries. For example, MATLAB’s fzero, used to find
# the root of a nonlinear function, employs a variation of Brent’s.
# Python script from https://nickcdryan.com/2017/09/13/root-finding-algorithms-in-python-line-search-bisection-secant-newton-raphson-boydens-inverse-quadratic-interpolation-brents/
fx0 = f(x0)
fx1 = f(x1)
# print(str(fx0) + ", " + str(fx1))
if ((fx0 * fx1) > 0):
# print("Root not bracketed "+str(fx0)+", "+str(fx1))
# assert ((fx0 * fx1) <= 0), ("-----Root not bracketed"+str(fx0)+", "+str(fx1))
return -999
if abs(fx0) < abs(fx1):
x0, x1 = x1, x0
fx0, fx1 = fx1, fx0
x2, fx2 = x0, fx0
mflag = True
steps_taken = 0
d = np.nan
while steps_taken < max_iter and abs(x1 - x0) > tolerance:
fx0 = f(x0)
fx1 = f(x1)
fx2 = f(x2)
if fx0 != fx2 and fx1 != fx2:
L0 = (x0 * fx1 * fx2) / ((fx0 - fx1) * (fx0 - fx2))
L1 = (x1 * fx0 * fx2) / ((fx1 - fx0) * (fx1 - fx2))
L2 = (x2 * fx1 * fx0) / ((fx2 - fx0) * (fx2 - fx1))
new = L0 + L1 + L2
else:
new = x1 - ((fx1 * (x1 - x0)) / (fx1 - fx0))
if ((new < ((3 * x0 + x1) / 4) or new > x1)
or (mflag and (abs(new - x1)) >= (abs(x1 - x2) / 2))
or (mflag == False and (abs(new - x1)) >= (abs(x2 - d) / 2))
or (mflag and (abs(x1 - x2)) < tolerance)
or (mflag == False and (abs(x2 - d)) < tolerance)):
new = (x0 + x1) / 2
mflag = True
else:
mflag = False
fnew = f(new)
d, x2 = x2, x1
if (fx0 * fnew) < 0:
x1 = new
else:
x0 = new
if abs(fx0) < abs(fx1):
x0, x1 = x1, x0
steps_taken += 1
return x1
# %% =====================================================================
def funp(x, al, sph_calc, ak1):
# Spectral planar albedo
# Inputs:
# x input wavelength (should work with any)
# ak1
# al absorption length
# sph_calc sph_calc= 0 for planar =1 for spherical
#
# Constants:
# xa(168),ya(168) imaginary part (ya) of the refraction index at specified wavelength (xa)
#
# Outputs:
# f1*funcs ?
#
# bav 2020
# using numpy interpolation
y = np.interp(x, xa, ya)
dega = 1000. * al * 4. * np.pi * y / x
pow = np.sqrt(dega)
if (pow >= 1.e-6):
rsd = np.exp(-pow)
else:
rsd = 1.
if (sph_calc == 0):
rs = rsd**ak1
elif (sph_calc == 1):
rs = rsd
if (x < 0.4):
x = 0.4
funcs = f0 + f1 * np.exp(-x * bet) + f2 * np.exp(-x * gam)
return rs * funcs
# %% Approximation functions for BBA integration
def plane_albedo_sw_approx(D, am1):
anka = 0.7389 - 0.1783 * am1 + 0.0484 * am1 ** 2.
banka = 0.0853 + 0.0414 * am1 - 0.0127 * am1 ** 2.
canka = 0.1384 + 0.0762 * am1 - 0.0268 * am1 ** 2.
diam1 = 187.89 - 69.2636 * am1 + 40.4821 * am1 ** 2.
diam2 = 2687.25 - 405.09 * am1 + 94.5 * am1 ** 2.
return anka + banka * np.exp(-1000 * D / diam1) + canka \
* np.exp(-1000 * D / diam2)
def spher_albedo_sw_approx(D):
anka = 0.6420
banka = 0.1044
canka = 0.1773
diam1 = 158.62
diam2 = 2448.18
return anka + banka * np.exp(-1000 * D / diam1) + canka \
* np.exp(-1000 * D / diam2)
# %% CalCULATION OF BBA for clean pixels
def BBA_calc_clean(al, ak1):
# for clean snow
# plane albedo
sph_calc = 0 # planar
# visible(0.3-0.7micron)
def func_integ(x):
return funp(x, al, sph_calc, ak1)
p1 = qsimp(func_integ, 0.3, 0.7)
# near-infrared (0.7-2.4micron)
# p2 = trapzd(func_integ,0.7,2.4, 20)
p2 = qsimp(func_integ, 0.7, 2.4)
# spherical albedo
sph_calc = 1 # spherical calculation
def func_integ(x):
return funp(x, al, sph_calc, ak1)
# visible(0.3-0.7micron)
# s1 = trapzd(func_integ,0.3,0.7, 20)
s1 = qsimp(func_integ, 0.3, 0.7)
# near-infrared (0.7-2.4micron)
# s2 = trapzd(func_integ,0.7,2.4, 20)
s2 = qsimp(func_integ, 0.7, 2.4)
# shortwave(0.3-2.4 micron)
# END of clean snow bba calculation
return p1, p2, s1, s2
# %% ===============================
def qsimp(func, a, b):
# integrate function between a and b using simpson's method.
# works as fast as scipy.integrate quad
eps = 1.e-3
jmax = 20
ost = -1.e30
os = -1.e30
for j in range(jmax):
if (j == 0):
st = 0.5 * (b - a) * (func(a) + func(b))
else:
it = 2 ** (j - 1)
tnm = it
delta = (b - a) / tnm
x = a + 0.5 * delta
sum = 0.
for jj in range(it):
sum = sum + func(x)
x = x + delta
st = 0.5 * (st + (b - a) * sum / tnm)
s = (4. * st - ost) / 3.
if (j > 4):
if (abs(s - os) < eps * abs(os)):
return s
if (s == 0) and (os == 0.):
return s
os = s
ost = st
print("Max iteration reached")
return s
# %% Calculation f BBA for polluted snow
def BBA_calc_pol(alb, asol, sol1_pol, sol2, sol3_pol):
# polluted snow
# NEW CODE FOR BBA OF BARE ICE
# alb is either the planar or spherical albedo
# ANAlYTICal EQUATION FOR THE NOMINATOR
# integration over 3 segments
# segment 1
# QUADRATIC POLYNOMIal for the range 400-709nm
# input wavelength
# alam2=w[0]
# alam3=w[5]
# alam5=w[10]
# alam6=w[11]
# alam7=w[16]
# alam8=w[20]
alam2 = 0.4
alam3 = 0.56
alam5 = 0.709
alam6 = 0.753
alam7 = 0.865
alam8 = 1.02
# input reflectances
r2 = alb[0, :]
r3 = alb[5, :]
r5 = alb[10, :]
r6 = alb[11, :]
r7 = alb[16, :]
r8 = alb[20, :]
sa1, a1, b1, c1 = quad_func(alam2, alam3, alam5, r2, r3, r5)
ajx1 = a1 * sol1_pol
ajx2 = b1 * coef1
ajx3 = c1 * coef2
aj1 = ajx1 + ajx2 + ajx3
# segment 2.1
# QUADRATIC POLYNOMIal for the range 709-865nm
sa1, a2, b2, c2 = quad_func(alam5, alam6, alam7, r5, r6, r7)
ajx1 = a2 * asol
ajx2 = b2 * coef3
ajx3 = c2 * coef4
aj2 = ajx1 + ajx2 + ajx3 # segment 2.2
# exponential approximation for the range 865- 2400 nm
z1 = 0.865
z2 = 2.4
rati = r7 / r8
alasta = (alam8 - alam7) / np.log(rati)
an = 1. / alasta
p = r7 * np.exp(alam7 / alasta)
aj31 = (1. / an) * (np.exp(-an * z2) - np.exp(-an * z1))
aj32 = (1. / (bet + an)) * (np.exp(-(bet + an) * z2) - np.exp(-(an + bet) * z1))
aj33 = (1. / (gam + an)) * (np.exp(-(gam + an) * z2) - np.exp(-(an + gam) * z1))
aj3 = (-f0 * aj31 - f1 * aj32 - f2 * aj33) * p
BBA_vis = aj1 / sol1_pol
BBA_nir = (aj2 + aj3) / sol2 # here segment 2.1 and 2.2 are summed
BBA_sw = (aj1 + aj2 + aj3) / sol3_pol
return BBA_vis, BBA_nir, BBA_sw
# %% ==========================================================================
def quad_func(x0, x1, x2, y0, y1, y2):
# quadratic function used for the polluted snow BBA calculation
# see BBA_calc_pol
# compatible with arrays
d1 = (x0 - x1) * (x0 - x2)
d2 = (x1 - x0) * (x1 - x2)
d3 = (x2 - x0) * (x2 - x1)
a1 = x1 * x2 * y0 / d1 + x0 * x2 * y1 / d2 + x0 * x1 * y2 / d3
b1 = -(x1 + x2) * y0 / d1 - (x0 + x2) * y1 / d2 - (x0 + x1) * y2 / d3
c1 = y0 / d1 + y1 / d2 + y2 / d3
x = x1
sa = a1 + b1 * x + c1 * x * x
return sa, a1, b1, c1