forked from pythaiml/automindx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UIUX4.py
85 lines (67 loc) · 3 KB
/
UIUX4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import gradio as gr
import fire
from enum import Enum
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
from MASTERMIND import MASTERMIND
from logic import LogicTables
from reasoning import SocraticReasoning
from prediction import Predictor
from epistemic import AutoepistemicAgent
from bdi import BDIModel # Import BDI model functionalities
from memory import save_conversation_memory
from aglm import LlamaModel
class Model_Type(Enum):
gptq = 1
ggml = 2
full_precision = 3
def get_model_type(model_name):
if "gptq" in model_name.lower():
return Model_Type.gptq
elif "ggml" in model_name.lower():
return Model_Type.ggml
else:
return Model_Type.full_precision
def initialize_model(model_name, model_type):
models_folder = "./models/" # Ensure your models are stored here
aglm_model = LlamaModel(model_name, models_folder)
return aglm_model.model, aglm_model.tokenizer
def run_ui(model, tokenizer, is_chat_model, model_type, save_history=True):
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
conversation_memory = []
epistemic_agent = AutoepistemicAgent(initial_beliefs={'The sky is blue': True})
bdi_agent = BDIModel() # Instantiate the BDI model
def user(user_message, memory):
nonlocal conversation_memory
conversation_memory.append([user_message, None])
# Simulate user adding conflicting information and use BDI model to handle it
epistemic_agent.add_information({'The sky is blue': False})
epistemic_agent.revise_beliefs()
bdi_response = bdi_agent.handle_message(user_message) # Hypothetical method in BDI model
current_beliefs = epistemic_agent.beliefs
memory[-1][1] = f"Updated beliefs: {current_beliefs}, BDI response: {bdi_response}"
return "", memory
def bot(memory):
nonlocal conversation_memory
conversation_memory = memory
instruction = memory[-1][0]
aglm_model = LlamaModel(model_name, "./models/")
response = aglm_model.generate_contextual_output(instruction)
memory[-1][1] = f"Response: {response}"
if save_history:
save_conversation_memory(conversation_memory)
return memory
msg.submit(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(bot, inputs=[chatbot], outputs=[chatbot])
clear.click(lambda: None, inputs=None, outputs=chatbot, queue=False)
demo.launch(share=False, debug=True)
def main(model_name=None, file_name=None, save_history=True):
assert model_name, "model_name argument is missing."
model_type = get_model_type(model_name)
model, tokenizer = initialize_model(model_name, model_type)
run_ui(model, tokenizer, 'chat' in model_name.lower(), model_type, save_history=save_history)
if __name__ == '__main__':
fire.Fire(main)