-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathscenedreamer_train.yaml
223 lines (198 loc) · 5.59 KB
/
scenedreamer_train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
image_save_iter: 5000
snapshot_save_epoch: 5
snapshot_save_iter: 10000
max_epoch: 400
logging_iter: 10
trainer:
type: imaginaire.trainers.gancraft
model_average_config:
enabled: False
amp_config:
enabled: False
perceptual_loss:
mode: 'vgg19'
layers: ['relu_3_1', 'relu_4_1', 'relu_5_1']
weights: [0.125, 0.25, 1.0]
loss_weight:
l2: 10.0
gan: 0.5
pseudo_gan: 0.5
perceptual: 10.0
kl: 0.05
init:
type: xavier
gain: 0.02
# SPADE/GauGAN model for pseudo-GT generation.
gaugan_loader:
config: configs/landscape1m.yaml
image_to_tensorboard: True
distributed_data_parallel_params:
find_unused_parameters: False
broadcast_buffers: False
gen_opt:
type: adam
lr: 0.0001
eps: 1.e-7
adam_beta1: 0.
adam_beta2: 0.999
lr_policy:
iteration_mode: False
type: step
step_size: 400
gamma: 0.1
param_groups:
world_encoder:
lr: 0.0005
hash_encoder:
lr: 0.0001
render_net:
lr: 0.0001
sky_net:
lr: 0.0001
style_net:
lr: 0.0001
style_encoder:
lr: 0.0001
denoiser:
lr: 0.0001
dis_opt:
type: adam
lr: 0.0004
eps: 1.e-7
adam_beta1: 0.
adam_beta2: 0.999
lr_policy:
iteration_mode: False
type: step
step_size: 400
gamma: 0.1
gen:
type: imaginaire.generators.scenedreamer
pcg_dataset_path: ./data/terrain_cache
pcg_cache: True
scene_size: 2048
blk_feat_dim: 64
pe_lvl_feat: 4
pe_incl_orig_feat: False
pe_no_pe_feat_dim: 40
pe_lvl_raydir: 0
pe_incl_orig_raydir: False
style_dims: 128 # Set to 0 to disable style.
interm_style_dims: 256
final_feat_dim: 64
# Number of pixels removed from each edge to reduce boundary artifact of CNN
# both sides combined (8 -> 4 on left and 4 on right).
pad: 6
# ======== Sky network ========
pe_lvl_raydir_sky: 5
pe_incl_orig_raydir_sky: True
# ======== Style Encoder =========
# Comment out to disable style encoder.
style_enc:
num_filters: 64
kernel_size: 3
weight_norm_type: 'none'
stylenet_model: StyleMLP
stylenet_model_kwargs:
normalize_input: True
num_layers: 5
mlp_model: RenderMLP
mlp_model_kwargs:
use_seg: True
# ======== Ray Casting Params ========
num_blocks_early_stop: 6
num_samples: 24 # Decrease it if you got OOM on lowend GPU
sample_depth: 3 # Stop the ray after certain depth
coarse_deterministic_sampling: False
sample_use_box_boundaries: False # Including voxel boundaries into the sample
# ======== Blender ========
raw_noise_std: 0.0
dists_scale: 0.25
clip_feat_map: True
# Prevent sky from leaking to the foreground.
keep_sky_out: True
keep_sky_out_avgpool: True
sky_global_avgpool: True
# ======== Label translator ========
reduced_label_set: True
use_label_smooth: True
use_label_smooth_real: True
use_label_smooth_pgt: True
label_smooth_dia: 11
# ======== Camera sampler ========
camera_sampler_type: 'traditional'
cam_res: [360, 640] # Camera resolution before cropping.
crop_size: [256, 256] # Actual crop size is crop_size+pad. It should generally match random_crop_h_w in dataloader.
# Threshold for rejecting camera poses that will result in a seg mask with low entropy.
# Generally, 0.5 min, 0.8 max.
camera_min_entropy: 0.75
# Threshold for rejecting camera poses that are too close to the objects.
camera_rej_avg_depth: 2.0
dis:
type: imaginaire.discriminators.gancraft
image_channels: 3
num_labels: 12 # Same as num_reduced_lbls.
use_label: True
num_filters: 128
fpse_kernel_size: 3
activation_norm_type: 'none'
weight_norm_type: spectral
smooth_resample: True
# Data options.
data:
type: imaginaire.datasets.paired_images
num_workers: 8
input_types:
- images:
ext: jpg
num_channels: 3
normalize: True
use_dont_care: False
- seg_maps:
ext: png
num_channels: 1
is_mask: True
normalize: False
full_data_ops: imaginaire.model_utils.label::make_one_hot, imaginaire.model_utils.label::concat_labels
use_dont_care: False
one_hot_num_classes:
seg_maps: 184
input_labels:
- seg_maps
# Which lmdb contains the ground truth image.
input_image:
- images
# Train dataset details.
train:
dataset_type: lmdb
# Input LMDBs.
roots:
- ./data/lhq_lmdb/train
# Batch size per GPU.
batch_size: 1
# Data augmentations to be performed in given order.
augmentations:
resize_smallest_side: 256
# Rotate in (-rotate, rotate) in degrees.
rotate: 0
# Scale image by factor \in [1, 1+random_scale_limit].
random_scale_limit: 0.2
# Horizontal flip?
horizontal_flip: True
# Crop size.
random_crop_h_w: 256, 256
# Train dataset details.
val:
dataset_type: lmdb
# Input LMDBs.
roots:
- ./data/lhq_lmdb/val
# Batch size per GPU.
batch_size: 1
# Data augmentations to be performed in given order.
augmentations:
# Crop size.
resize_h_w: 256, 256
test_data:
type: imaginaire.datasets.dummy
num_workers: 0