-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·377 lines (330 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import argparse
import time
import warnings
from tqdm import trange
from datetime import datetime
import numpy as np
from glob import glob
from shutil import copyfile
import cv2
from datasets.datasetgetter import get_dataset
import torch
from torch import autograd
from torch.nn import functional as F
import torch.nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
from models.resnet import rescamtf
from models.vgg import *
from models.vggtf import vggcamtf
from models.senet import serescamtf
from train import *
from validation import *
from utils import *
parser = argparse.ArgumentParser(description='PyTorch Simultaneous Training')
parser.add_argument('--data_dir', default='../data/', help='path to dataset')
parser.add_argument('--dataset', default='CUB', help='type of dataset',
choices=['CUB', 'IMAGENET', 'CARS', 'DOGS', 'AIRCRAFT'])
parser.add_argument('--network', type=str, default='serescam50',
choices=['vggcam16', 'vggcam16bn', 'vggcam19', 'vggcam19bn', 'vggimg16',
'rescam18', 'rescam34', 'rescam50', 'rescam101', 'rescam152',
'serescam50', 'serescam101', 'serescam152'])
parser.add_argument('--method', type=str, default='tf', choices=['cam', 'acol1', 'acol2', 'adl', 'acolcam', 'none', 'tf'], help='')
parser.add_argument('--workers', default=4, type=int, help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=80, type=int, help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--batch_size', default=32, type=int,
help='Total batch size - e.g) num_gpus = 2 , batch_size = 128 then, effectively, 64')
parser.add_argument('--val_batch', default=32, type=int)
parser.add_argument('--image_size', default=224, type=int, help='Input image size')
parser.add_argument('--log_step', default=50, type=int, help='print frequency (default: 50)')
parser.add_argument('--load_model', default=None, type=str, metavar='PATH',
help='path to latest checkpoint (default: None)')
parser.add_argument('--validation', dest='validation', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--test', dest='test', action='store_true',
help='test model on validation set')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=str,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--port', default='8888', type=str)
parser.add_argument('--tftypes', type=str, default='RTSHCO',
help='R: rotation / T: translation / S: shear / H : hflip / C : scale / O : odd')
def main():
args = parser.parse_args()
if args.gpu is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if "vgg" in args.network:
tmppre = '_V'
elif 'seres' in args.network:
tmppre = '_S'
args.prefix = args.dataset + '_' + args.tftypes + tmppre
if args.load_model is None:
args.model_name = '{}_{}'.format(args.prefix, datetime.now().strftime("%m-%d_%H-%M-%S"))
else:
args.model_name = args.load_model
makedirs('./logs')
makedirs('./results')
args.log_dir = os.path.join('./logs', args.model_name)
args.res_dir = os.path.join('./results', args.model_name)
makedirs(args.log_dir)
makedirs(os.path.join(args.log_dir, 'codes'))
makedirs(os.path.join(args.log_dir, 'codes', 'models'))
makedirs(os.path.join(args.log_dir, 'codes', 'datasets'))
makedirs(args.res_dir)
if args.load_model is None:
pyfiles = glob("./*.py")
modelfiles = glob('./models/*.py')
datafiles = glob('./datasets/*.py')
for py in pyfiles:
copyfile(py, os.path.join(args.log_dir, 'codes') + "/" + py)
for py in modelfiles:
copyfile(py, os.path.join(args.log_dir, 'codes', py[2:]))
for py in datafiles:
copyfile(py, os.path.join(args.log_dir, 'codes', py[2:]))
formatted_print('Total Number of GPUs:', ngpus_per_node)
formatted_print('Total Number of Workers:', args.workers)
formatted_print('Epochs:', args.epochs)
formatted_print('Batch Size:', args.batch_size)
formatted_print('Image Size:', args.image_size)
formatted_print('Log step:', args.log_step)
formatted_print('Log DIR:', args.log_dir)
formatted_print('Result DIR:', args.res_dir)
formatted_print('Network:', args.network)
formatted_print('Method:', args.method)
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
if len(args.gpu) == 1:
args.gpu = 0
else:
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:'+args.port,
world_size=args.world_size, rank=args.rank)
################
# Define model #
################
# ['rotation', 'translation', 'shear', 'hflip', 'scale']
tmptftypes = []
if 'R' in args.tftypes:
tmptftypes.append('rotation')
if 'T' in args.tftypes:
tmptftypes.append('translation')
if 'S' in args.tftypes:
tmptftypes.append('shear')
if 'H' in args.tftypes:
tmptftypes.append('hflip')
if 'C' in args.tftypes:
tmptftypes.append('scale')
if 'O' in args.tftypes:
tmptftypes.append('odd')
args.tftypes_org = args.tftypes
args.tftypes = tmptftypes
args.tfnums = [4, 3, 3, 2, 3, 5]
args.tfval = {'T': 0.1, 'C': 0.3, 'S': 30, 'O': 3.0}
print("=> Creating Classifier")
if 'tf' in args.method:
print('=> Use transform:\t', args.tftypes)
print('=> Use nums:\t', args.tfnums)
print('=> Use vals:\t', args.tfval)
if 'vgg' in args.network:
print("USE VGGCAMTF")
classifier = vggcamtf(args.network, args.tftypes, args.tfnums, pretrained=True)
elif 'seres' in args.network:
print('USE SERESNET')
classifier = serescamtf(args.network, args.tftypes, args.tfnums, pretrained=True)
elif 'res' in args.network:
print('USE RESCAMTF')
classifier = rescamtf(args.network, args.tftypes, args.tfnums, pretrained=True)
else:
print("NOT IMPLEMENTED")
return
else:
if args.dataset.lower() == 'imagenet':
if 'vgg' in args.network:
print('USE VGG')
assert args.network in ['vggimg16']
classifier = vggimg(args.network)
else:
if 'vgg' in args.network:
print('USE VGG')
classifier = vggcam(True, args.network, args.method, dataset=args.dataset)
elif args.network == 'res':
print('USE RES')
print("NOT IMPLEMENTED")
return
else:
print("NOT IMPLEMENTED")
return
networks = [classifier]
if args.distributed:
if args.gpu is not None:
print('Distributed', args.gpu)
torch.cuda.set_device(args.gpu)
networks = [x.cuda(args.gpu) for x in networks]
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int(args.workers / ngpus_per_node)
networks = [torch.nn.parallel.DistributedDataParallel(x, device_ids=[args.gpu], output_device=args.gpu) for x in networks]
else:
networks = [x.cuda() for x in networks]
networks = [torch.nn.parallel.DistributedDataParallel(x) for x in networks]
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
networks = [x.cuda(args.gpu) for x in networks]
else:
networks = [torch.nn.DataParallel(x).cuda() for x in networks]
classifier, = networks
######################
# Loss and Optimizer #
######################
if args.distributed:
c_opt = torch.optim.SGD(classifier.module.parameters(), 0.001, momentum=0.9, nesterov=True)
else:
c_opt = torch.optim.SGD(classifier.parameters(), 0.001, momentum=0.9, nesterov=True)
##############
# Load model #
##############
if args.load_model is not None:
check_load = open(os.path.join(args.log_dir, "checkpoint.txt"), 'r')
to_restore = check_load.readlines()[-1].strip()
load_file = os.path.join(args.log_dir, to_restore)
if os.path.isfile(load_file):
print("=> loading checkpoint '{}'".format(load_file))
checkpoint = torch.load(load_file, map_location='cpu')
args.start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['C_state_dict'])
c_opt.load_state_dict(checkpoint['c_optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(load_file, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.log_dir))
cudnn.benchmark = True
###########
# Dataset #
###########
train_dataset, val_dataset = get_dataset(args.dataset, args)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=(train_sampler is None), num_workers=args.workers,
pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch,
num_workers=args.workers, pin_memory=True)
######################
# Validate and Train #
######################
if args.validation:
if 'tf' in args.method:
validateTF(val_loader, networks, 678, args, True, additional={"dataset": val_dataset})
else:
if args.dataset.lower() == 'imagenet':
validateImage(val_loader, networks, 123, args, True)
else:
validateFull(val_loader, networks, 123, args, True)
return
elif args.test:
if 'tf' in args.method:
validateTF(val_loader, networks, 456, args, True, additional={"dataset": val_dataset})
else:
if args.dataset.lower() == 'imagenet':
validateImage(val_loader, networks, 456, args, True)
else:
validateFull(val_loader, networks, 456, args, True)
return
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
check_list = open(os.path.join(args.log_dir, "checkpoint.txt"), "a+")
record_txt = open(os.path.join(args.log_dir, "record.txt"), "a+")
record_txt.write('Network\t:\t{}\n'.format(args.network))
record_txt.write('Method\t:\t{}\n'.format(args.method))
record_txt.write('DATASET\t:\t{}\n'.format(args.dataset))
record_txt.write('TFTYPES\t:\t{}\n'.format(args.tftypes))
record_txt.write('TFNUMS\t:\t{}\n'.format(args.tfnums))
record_txt.write('TFVALS\t:\t{}\n'.format(args.tfval))
record_txt.close()
best = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
if epoch in [60, ]:
for param_group in c_opt.param_groups:
param_group['lr'] *= 0.2
print(param_group['lr'])
if 'tf' in args.method:
acc_train = trainTF(train_loader, networks, [c_opt], epoch, args, [None])
acc_val = validateTF(val_loader, networks, epoch, args, saveimgs=False, additional={"dataset": val_dataset})
best_criterion = acc_val['GT']
else:
acc_train = trainFull(train_loader, networks, [c_opt], epoch, args, [None])
acc_val = validateFull(val_loader, networks, epoch, args, saveimgs=False)
best_criterion = acc_val['top1loc']
##############
# Save model #
##############
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
if epoch == 0:
check_list = open(os.path.join(args.log_dir, "checkpoint.txt"), "a+")
if best < best_criterion:
best = best_criterion
best_ckpt = [f for f in glob(os.path.join(args.log_dir, "*.ckpt")) if "best" in f]
if len(best_ckpt) != 0:
os.remove(best_ckpt[0])
save_checkpoint({
'epoch': epoch + 1,
'C_state_dict': classifier.state_dict(),
'c_optimizer': c_opt.state_dict(),
}, check_list, args.log_dir, 'best' + str(best).replace(".", "_"))
if (epoch + 1) % (args.epochs//10) == 0:
save_checkpoint({
'epoch': epoch + 1,
'C_state_dict': classifier.state_dict(),
'c_optimizer': c_opt.state_dict(),
}, check_list, args.log_dir, epoch + 1)
if epoch == (args.epochs - 1):
check_list.close()
record_txt = open(os.path.join(args.log_dir, "record.txt"), "a+")
if 'tf' in args.method:
record_txt.write(
'Epoch : {:3d}, Train R : {:.4f} T : {:.4f} S : {:.4f} H : {:.4f} C : {:.4f} O : {:.4f},'
' VAL R : {:.4f} T : {:.4f} S : {:.4f} H : {:.4f} C : {:.4f} O : {:.4f}, GT : {:.4f}\n'.
format(epoch, acc_train['R'], acc_train['T'],
acc_train['S'], acc_train['H'], acc_train['C'], acc_train['O'],
acc_val['R'], acc_val['T'], acc_val['S'], acc_val['H'], acc_val['C'], acc_val['O'],
acc_val['GT']))
else:
record_txt.write(
'Epoch : {:3d}, Train top1 : {:.4f} top5 : {:.4f} ,'
' VAL top1 : {:.4f} top5 : {:.4f} LOC : {:.4f} GT : {:.4f}\n'.
format(epoch, acc_train['top1acc'], acc_train['top5acc'],
acc_val['top1acc'], acc_val['top5acc'], acc_val['top1loc'], acc_val['gtknown']))
record_txt.close()
copyfile(os.path.join(args.log_dir, "record.txt"), os.path.join(args.log_dir, "recordNOW.txt"))
print('BEST LOC EVER : {:.3f}'.format(best))
if __name__ == '__main__':
main()