forked from jasoncoon/esp8266-fastled-webserver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLED_Functions.h
472 lines (377 loc) · 14.1 KB
/
LED_Functions.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#include "LED_Settings.h"
#include <FastLED.h>
FASTLED_USING_NAMESPACE
#include "GradientPalettes.h"
///////////////////////////////////////////////////////////////////////
///////////////////////// Globals ///////////////////////////////////
///////////////////////////////////////////////////////////////////////
CRGB leds[NUM_LEDS];
const uint8_t brightnessCount = 5;
uint8_t brightnessMap[brightnessCount] = { 16, 32, 64, 128, 255 };
uint8_t brightnessIndex = 0;
uint8_t power = 1;
uint8_t brightness = brightnessMap[brightnessIndex];
// ten seconds per color palette makes a good demo
// 20-120 is better for deployment
uint8_t secondsPerPalette = 10;
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
uint8_t cooling = 49;
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
uint8_t sparking = 60;
uint8_t speed = 30;
//////////////////////////////////////////////////////////////////////
// Forward declarations of an array of cpt-city gradient palettes, and
// a count of how many there are. The actual color palette definitions
// are at the bottom of this file.
extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
uint8_t gCurrentPaletteNumber = 0;
CRGBPalette16 gCurrentPalette( CRGB::Black);
CRGBPalette16 gTargetPalette( gGradientPalettes[0] );
CRGBPalette16 IceColors_p = CRGBPalette16(CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
uint8_t currentPatternIndex = 0; // Index number of which pattern is current
uint8_t autoplay = 0;
uint8_t autoplayDuration = 10;
unsigned long autoPlayTimeout = 0;
uint8_t currentPaletteIndex = 0;
uint8_t gHue = 0; // rotating "base color" used by many of the patterns
CRGB solidColor = CRGB::Blue;
///////////////////////////////////////////////////////////////////////
///////////////////////// Function Prototypes ////////////////////
///////////////////////////////////////////////////////////////////////
void dimAll(byte);
void strandTest(void);
void showSolidColor(void);
void rainbow(void);
void addGlitter();
void addGlitter2(const CRGB&);
void rainbowWithGlitter(void);
void rainbowSolid(void);
void confetti(void);
void sinelon(void);
void bpm(void);
void juggle(void);
void fire(void);
void water(void);
void pride(void);
void radialPaletteShift(void);
void heatMap(CRGBPalette16, bool);
uint8_t beatsaw8( accum88, uint8_t, uint8_t,uint32_t, uint8_t);
void colorWaves(void);
void colorwaves( CRGB*, uint16_t, CRGBPalette16&);
void palettetest( CRGB* , uint16_t , const CRGBPalette16&);
void LEDSetup(void);
void showSolidSparkling(void);
///////////////////////////////////////////////////////////////////////
///////////////////////// Data Structures ///////////////////////////
///////////////////////////////////////////////////////////////////////
typedef void (*Pattern)();
typedef Pattern PatternList[];
typedef struct {
Pattern pattern;
String name;
} PatternAndName;
typedef PatternAndName PatternAndNameList[];
#include "Twinkles.h"
#include "TwinkleFOX.h"
#include "LED_Customization.h"
const uint8_t patternCount = ARRAY_SIZE(patterns);
typedef struct {
CRGBPalette16 palette;
String name;
} PaletteAndName;
typedef PaletteAndName PaletteAndNameList[];
///////////////////////////////////////////////////////////////////////
// Forward declarations of an array of cpt-city gradient palettes, and
// a count of how many there are. The actual color palette definitions
// are at the bottom of this file.
extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
extern const uint8_t gGradientPaletteCount;
///////////////////////////////////////////////////////////////////////
///////////////////////// Animation Declarations ////////////////////
///////////////////////////////////////////////////////////////////////
// scale the brightness of all pixels down
void dimAll(byte value)
{
for (int i = 0; i < NUM_LEDS; i++) {
leds[i].nscale8(value);
}
}
void strandTest()
{
static uint8_t i = 0;
EVERY_N_SECONDS(1)
{
i++;
if (i >= NUM_LEDS)
i = 0;
}
fill_solid(leds, NUM_LEDS, CRGB::Black);
leds[i] = solidColor;
}
void showSolidColor()
{
fill_solid(leds, NUM_LEDS, solidColor);
}
void showSolidSparkling()
{
fill_solid(leds, NUM_LEDS, solidColor);
addGlitter2(solidColor.lerp8(CRGB::White, ~cooling));
}
// Patterns from FastLED example DemoReel100: https://github.com/FastLED/FastLED/blob/master/examples/DemoReel100/DemoReel100.ino
void rainbow()
{
uint8_t thishue = beat8(speed);
fill_rainbow(leds, NUM_LEDS, thishue, 255 / NUM_LEDS);
}
void addGlitter()
{
if ( random8() < sparking) {
leds[random16(NUM_LEDS)] += CRGB::White;
}
}
void addGlitter2(const CRGB& set)
{
if (random8() < sparking) {
leds[random16(NUM_LEDS)] += set;
}
}
void rainbowWithGlitter()
{
// built-in FastLED rainbow, plus some random sparkly glitter
rainbow();
addGlitter();
}
void rainbowSolid()
{
uint8_t thishue = beat8(speed);
fill_solid(leds, NUM_LEDS, CHSV(thishue, 255, 255));
}
void confetti()
{
// random colored speckles that blink in and fade smoothly
fadeToBlackBy( leds, NUM_LEDS, 10);
int pos = random16(NUM_LEDS);
// leds[pos] += CHSV( gHue + random8(64), 200, 255);
leds[pos] += ColorFromPalette(palettes[currentPaletteIndex], gHue + random8(64));
}
void sinelon()
{
// a colored dot sweeping back and forth, with fading trails
fadeToBlackBy( leds, NUM_LEDS, cooling);
int pos = beatsin16(speed, 0, NUM_LEDS);
static int prevpos = 0;
CRGB color = ColorFromPalette(palettes[currentPaletteIndex], gHue, 255);
if ( pos < prevpos ) {
fill_solid( leds + pos, (prevpos - pos) + 1, color);
} else {
fill_solid( leds + prevpos, (pos - prevpos) + 1, color);
}
prevpos = pos;
}
void bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t beat = beatsin8( speed, 64, 255);
CRGBPalette16 palette = palettes[currentPaletteIndex];
for ( int i = 0; i < NUM_LEDS; i++) {
leds[i] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10));
}
}
void juggle()
{
static uint8_t numdots = 4; // Number of dots in use.
static uint8_t faderate = 2; // How long should the trails be. Very low value = longer trails.
static uint8_t hueinc = 255 / numdots - 1; // Incremental change in hue between each dot.
static uint8_t thishue = 0; // Starting hue.
static uint8_t curhue = 0; // The current hue
static uint8_t thissat = 255; // Saturation of the colour.
static uint8_t thisbright = 255; // How bright should the LED/display be.
static uint8_t basebeat = 5; // Higher = faster movement.
static uint8_t lastSecond = 99; // Static variable, means it's only defined once. This is our 'debounce' variable.
uint8_t secondHand = (millis() / 1000) % 30; // IMPORTANT!!! Change '30' to a different value to change duration of the loop.
if (lastSecond != secondHand) { // Debounce to make sure we're not repeating an assignment.
lastSecond = secondHand;
switch (secondHand) {
case 0: numdots = 1; basebeat = 20; hueinc = 16; faderate = 2; thishue = 0; break; // You can change values here, one at a time , or altogether.
case 10: numdots = 4; basebeat = 10; hueinc = 16; faderate = 8; thishue = 128; break;
case 20: numdots = 8; basebeat = 3; hueinc = 0; faderate = 8; thishue = random8(); break; // Only gets called once, and not continuously for the next several seconds. Therefore, no rainbows.
case 30: break;
}
}
// Several colored dots, weaving in and out of sync with each other
curhue = thishue; // Reset the hue values.
fadeToBlackBy(leds, NUM_LEDS, faderate);
for ( int i = 0; i < numdots; i++) {
//beat16 is a FastLED 3.1 function
leds[beatsin16(basebeat + i + numdots, 0, NUM_LEDS)] += CHSV(gHue + curhue, thissat, thisbright);
curhue += hueinc;
}
}
void fire()
{
heatMap(HeatColors_p, true);
}
void water()
{
heatMap(IceColors_p, false);
}
// Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
void pride()
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 1, 3000);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for ( uint16_t i = 0 ; i < NUM_LEDS; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16 ) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
CRGB newcolor = CHSV( hue8, sat8, bri8);
uint16_t pixelnumber = i;
pixelnumber = (NUM_LEDS - 1) - pixelnumber;
nblend( leds[pixelnumber], newcolor, 64);
}
}
void radialPaletteShift()
{
for (uint16_t i = 0; i < NUM_LEDS; i++) {
// leds[i] = ColorFromPalette( gCurrentPalette, gHue + sin8(i*16), brightness);
leds[i] = ColorFromPalette(gCurrentPalette, i + gHue, 255, LINEARBLEND);
}
}
// based on FastLED example Fire2012WithPalette: https://github.com/FastLED/FastLED/blob/master/examples/Fire2012WithPalette/Fire2012WithPalette.ino
void heatMap(CRGBPalette16 palette, bool up)
{
fill_solid(leds, NUM_LEDS, CRGB::Black);
// Add entropy to random number generator; we use a lot of it.
random16_add_entropy(random(256));
// Array of temperature readings at each simulation cell
static byte heat[NUM_LEDS];
byte colorindex;
// Step 1. Cool down every cell a little
for ( uint16_t i = 0; i < NUM_LEDS; i++) {
heat[i] = qsub8( heat[i], random8(0, ((cooling * 10) / NUM_LEDS) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for ( uint16_t k = NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if ( random8() < sparking ) {
int y = random8(7);
heat[y] = qadd8( heat[y], random8(160, 255) );
}
// Step 4. Map from heat cells to LED colors
for ( uint16_t j = 0; j < NUM_LEDS; j++) {
// Scale the heat value from 0-255 down to 0-240
// for best results with color palettes.
colorindex = scale8(heat[j], 190);
CRGB color = ColorFromPalette(palette, colorindex);
if (up) {
leds[j] = color;
}
else {
leds[(NUM_LEDS - 1) - j] = color;
}
}
}
uint8_t beatsaw8( accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255,
uint32_t timebase = 0, uint8_t phase_offset = 0)
{
uint8_t beat = beat8( beats_per_minute, timebase);
uint8_t beatsaw = beat + phase_offset;
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8( beatsaw, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
void colorWaves()
{
colorwaves( leds, NUM_LEDS, gCurrentPalette);
}
// ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb
// This function draws color waves with an ever-changing,
// widely-varying set of parameters, using a color palette.
void colorwaves( CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette)
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
// uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 300, 1500);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for ( uint16_t i = 0 ; i < numleds; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
uint16_t h16_128 = hue16 >> 7;
if ( h16_128 & 0x100) {
hue8 = 255 - (h16_128 >> 1);
} else {
hue8 = h16_128 >> 1;
}
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16 ) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
uint8_t index = hue8;
//index = triwave8( index);
index = scale8( index, 240);
CRGB newcolor = ColorFromPalette( palette, index, bri8);
uint16_t pixelnumber = i;
pixelnumber = (numleds - 1) - pixelnumber;
nblend( ledarray[pixelnumber], newcolor, 128);
}
}
// Alternate rendering function just scrolls the current palette
// across the defined LED strip.
void palettetest( CRGB* ledarray, uint16_t numleds, const CRGBPalette16& gCurrentPalette)
{
static uint8_t startindex = 0;
startindex--;
fill_palette( ledarray, numleds, startindex, (256 / NUM_LEDS) + 1, gCurrentPalette, 255, LINEARBLEND);
}
///////////////////////////////////////////////////////////////////////
///////////////////////// SETUP /////////////////////////////////////
///////////////////////////////////////////////////////////////////////
void LEDSetup(){
FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS); // for WS2812 (Neopixel)
//FastLED.addLeds<LED_TYPE,DATA_PIN,CLK_PIN,COLOR_ORDER>(leds, NUM_LEDS); // for APA102 (Dotstar)
FastLED.setDither(false);
FastLED.setCorrection(TypicalLEDStrip);
FastLED.setBrightness(brightness);
FastLED.setMaxPowerInVoltsAndMilliamps(5, MILLI_AMPS);
fill_solid(leds, NUM_LEDS, CRGB::Black);
FastLED.show();
FastLED.setBrightness(brightness);
}