-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprogressive_sampling_rank.py
186 lines (147 loc) · 6.68 KB
/
progressive_sampling_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from __future__ import division
import pandas as pd
import sys
from os import listdir
from random import shuffle
from sklearn.tree import DecisionTreeRegressor
from policies import policy1, policy2
import numpy as np
import time
import matplotlib.pyplot as plt
class solution_holder:
def __init__(self, id, decisions, objective, rank):
self.id = id
self.decision = decisions
self.objective = objective
self.rank = rank
def split_data(filename):
pdcontent = pd.read_csv(filename)
indepcolumns = [col for col in pdcontent.columns if "$<" not in col]
depcolumns = [col for col in pdcontent.columns if "$<" in col]
sortpdcontent = pdcontent.sort_values(by=depcolumns[-1])
content = list()
ranks = {}
for i, item in enumerate(sorted(set(sortpdcontent[depcolumns[-1]].tolist()))):
ranks[item] = i
for c in xrange(len(sortpdcontent)):
content.append(solution_holder(
c,
sortpdcontent.iloc[c][indepcolumns].tolist(),
sortpdcontent.iloc[c][depcolumns].tolist(),
ranks[sortpdcontent.iloc[c][depcolumns].tolist()[-1]]
)
)
shuffle(content)
indexes = range(len(content))
train_indexes, validation_indexes, test_indexes = indexes[:int(0.4*len(indexes))], indexes[int(.4*len(indexes)):int(.6*len(indexes))], indexes[int(.6*len(indexes)):]
assert(len(train_indexes) + len(validation_indexes) + len(test_indexes) == len(indexes)), "Something is wrong"
train_set = [content[i] for i in train_indexes]
validation_set = [content[i] for i in validation_indexes]
test_set = [content[i] for i in test_indexes]
return [train_set, validation_set, test_set]
def mre_progressive(train, test, threshold=0.1):
train_independent = [t.decision for t in train]
train_dependent = [t.objective[-1] for t in train]
test_independent = [t.decision for t in test]
test_dependent = [t.objective[-1] for t in test]
model = DecisionTreeRegressor()
model.fit(train_independent, train_dependent)
predicted = model.predict(test_independent)
mre = []
for org, pred in zip(test_dependent, predicted):
mre.append(abs(org - pred)/ abs(org))
return np.mean(mre)
def rank_progressive(train, test, threshold=4):
train_independent = [t.decision for t in train]
train_dependent = [t.objective[-1] for t in train]
sorted_test = sorted(test, key=lambda x: x.objective[-1])
for r,st in enumerate(sorted_test): st.rank = r
test_independent = [t.decision for t in sorted_test]
test_dependent = [t.objective[-1] for t in sorted_test]
model = DecisionTreeRegressor()
model.fit(train_independent, train_dependent)
predicted = model.predict(test_independent)
predicted_id = [[i,p] for i,p in enumerate(predicted)]
predicted_sorted = sorted(predicted_id, key=lambda x: x[-1])
# assigning predicted ranks
predicted_rank_sorted = [[p[0], p[-1], i] for i,p in enumerate(predicted_sorted)]
rank_diffs = [abs(p[0] - p[-1]) for p in predicted_rank_sorted]
return np.mean(rank_diffs)
def wrapper_rank_progressive(train_set, validation_set):
initial_size = 10
training_indexes = range(len(train_set))
shuffle(training_indexes)
sub_train_set = [train_set[i] for i in training_indexes[:initial_size]]
steps = 0
rank_diffs = []
while (initial_size+steps) < len(train_set) - 1:
rank_diffs.append(rank_progressive(sub_train_set, validation_set))
policy_result = policy1(rank_diffs)
if policy_result != -1: break
steps += 1
sub_train_set.append(train_set[initial_size+steps])
return sub_train_set
def wrapper_mre_progressive(train_set, validation_set, threshold=0.1):
initial_size = 10
training_indexes = range(len(train_set))
shuffle(training_indexes)
sub_train_set = [train_set[i] for i in training_indexes[:initial_size]]
steps = 0
while (initial_size+steps) < len(train_set) - 1:
mre_returned = mre_progressive(sub_train_set, validation_set)
if mre_returned < threshold: break
steps += 1
sub_train_set.append(train_set[initial_size+steps])
return sub_train_set
def find_lowest_rank(train, test, bracket=10):
# Test data
train_independent = [t.decision for t in train]
train_dependent = [t.objective[-1] for t in train]
sorted_test = sorted(test, key=lambda x: x.objective[-1])
for r, st in enumerate(sorted_test): st.rank = r
test_independent = [t.decision for t in sorted_test]
test_dependent = [t.objective[-1] for t in sorted_test]
model = DecisionTreeRegressor()
model.fit(train_independent, train_dependent)
predicted = model.predict(test_independent)
predicted_id = [[i, p] for i, p in enumerate(predicted)]
predicted_sorted = sorted(predicted_id, key=lambda x: x[-1])
# assigning predicted ranks
predicted_rank_sorted = [[p[0], p[-1], i] for i,p in enumerate(predicted_sorted)]
select_few = predicted_rank_sorted[:10]
return [sf[0] for sf in select_few]
if __name__ == "__main__":
datafolder = "./Data/"
evals_dict = {}
rank_diffs_dict = {}
stats_dict = {}
files = [datafolder + f for f in listdir(datafolder)]
for file in files:
print file
evals_dict[file] = []
rank_diffs_dict[file] = []
stats_dict[file] = {}
rank_rank_diffs = []
rank_evals = []
for _ in xrange(20):
print "+ ",
datasets = split_data(file)
train_set = datasets[0]
validation_set = datasets[1]
test_set = datasets[2]
sub_train_set_rank = wrapper_rank_progressive(train_set, validation_set)
lowest_rank = find_lowest_rank(sub_train_set_rank, test_set)
len_rank_train_set = len(sub_train_set_rank)
min_rank_prog = min(lowest_rank)
rank_rank_diffs.append(min_rank_prog)
rank_evals.append(len_rank_train_set + len(validation_set) + 10)
evals_dict[file] = rank_evals
rank_diffs_dict[file] = rank_rank_diffs
stats_dict[file]["mean_rank_diff"] = np.mean(rank_rank_diffs)
stats_dict[file]["std_rank_diff"] = np.std(rank_rank_diffs)
stats_dict[file]["mean_evals"] = np.mean(rank_evals)
stats_dict[file]["std_evals"] = np.std(rank_evals)
import pickle
pickle.dump(evals_dict, open("./PickleLocker/Progressive_Rank_Evals.p", "w"))
pickle.dump(rank_diffs_dict, open("./PickleLocker/Progressive_Rank_Rank_Diff.p", "w"))
pickle.dump(stats_dict, open("./PickleLocker/Progressive_Rank_Stats.p", "w"))