-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprogressive_active_learning.py
135 lines (115 loc) · 5.16 KB
/
progressive_active_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import division
import pandas as pd
import sys
from os import listdir
from random import shuffle
from sklearn.tree import DecisionTreeRegressor
from policies import policy1, policy2
import numpy as np
class solution_holder:
def __init__(self, id, decisions, objective, rank):
self.id = id
self.decision = decisions
self.objective = objective
self.rank = rank
def get_data(filename, initial_size):
"""
:param filename:
:param Initial training size
:return: Training and Testing
"""
pdcontent = pd.read_csv(filename)
indepcolumns = [col for col in pdcontent.columns if "$<" not in col]
depcolumns = [col for col in pdcontent.columns if "$<" in col]
sortpdcontent = pdcontent.sort_values(by=depcolumns[-1])
ranks = {}
for i, item in enumerate(sorted(set(sortpdcontent[depcolumns[-1]].tolist()))):
ranks[item] = i
content = list()
for c in xrange(len(sortpdcontent)):
content.append(solution_holder(
c,
sortpdcontent.iloc[c][indepcolumns].tolist(),
sortpdcontent.iloc[c][depcolumns].tolist(),
ranks[sortpdcontent.iloc[c][depcolumns].tolist()[-1]]
)
)
shuffle(content)
indexes = range(len(content))
train_indexes, test_indexes = indexes[:initial_size], indexes[initial_size:]
assert(len(train_indexes) + len(test_indexes) == len(indexes)), "Something is wrong"
train_set = [content[i] for i in train_indexes]
test_set = [content[i] for i in test_indexes]
return [train_set, test_set]
def get_best_configuration_id(train, test):
train_independent = [t.decision for t in train]
train_dependent = [t.objective[-1] for t in train]
test_independent = [t.decision for t in test]
model = DecisionTreeRegressor()
model.fit(train_independent, train_dependent)
predicted = model.predict(test_independent)
predicted_id = [[t.id,p] for t,p in zip(test, predicted)]
predicted_sorted = sorted(predicted_id, key=lambda x: x[-1])
# Find index of the best predicted configuration
best_index = predicted_sorted[0][0]
return best_index
def run_active_learning(filename, initial_size, max_lives=10):
steps = 0
lives = max_lives
training_set, testing_set = get_data(filename, initial_size)
dataset_size = len(training_set) + len(testing_set)
while (initial_size+steps) < dataset_size - 1:
best_id = get_best_configuration_id(training_set, testing_set)
# print best_index, len(testing_set)
best_solution = [t for t in testing_set if t.id == best_id][-1]
list_of_all_solutions = [t.objective[-1] for t in training_set]
if best_solution.objective[-1] < min(list_of_all_solutions):
lives = max_lives
else:
lives -= 1
training_set.append(best_solution)
# find index of the best_index
best_index = [i for i in xrange(len(testing_set)) if testing_set[i].id == best_id]
assert(len(best_index) == 1), "Something is wrong"
best_index = best_index[-1]
del testing_set[best_index]
assert(len(training_set) + len(testing_set) == dataset_size), "Something is wrong"
if lives == 0:
break
steps += 1
return training_set, testing_set
def wrapper_run_active_learning(filename, initial_size):
training_set, testing_set= run_active_learning(filename, initial_size)
global_min = min([t.objective[-1] for t in training_set + testing_set])
best_training_solution = [ tt.rank for tt in training_set if min([t.objective[-1] for t in training_set]) == tt.objective[-1]]
best_solution = [tt.rank for tt in training_set + testing_set if tt.objective[-1] == global_min]
print (min(best_training_solution) - min(best_solution)), len(training_set), " | ",
return (min(best_training_solution) - min(best_solution)), len(training_set)
if __name__ == "__main__":
filenames = ["./Data/"+f for f in listdir("./Data")]
initial_size = 20
evals_dict = {}
rank_diffs_dict = {}
stats_dict = {}
for filename in filenames:
evals_dict[filename] = []
rank_diffs_dict[filename] = []
stats_dict[filename] = {}
rank_diffs = []
evals = []
print filename
for _ in xrange(20):
temp1, temp2 = wrapper_run_active_learning(filename, initial_size)
rank_diffs.append(temp1)
evals.append(temp2)
print
evals_dict[filename] = evals
rank_diffs_dict[filename] = rank_diffs
stats_dict[filename]["mean_rank_diff"] = np.mean(rank_diffs)
stats_dict[filename]["std_rank_diff"] = np.std(rank_diffs)
stats_dict[filename]["mean_evals"] = np.mean(evals)
stats_dict[filename]["std_evals"] = np.std(evals)
import pickle
pickle.dump(evals_dict, open("./PickleLocker/ActiveLearning_Evals.p", "w"))
pickle.dump(rank_diffs_dict, open("./PickleLocker/ActiveLearning_Rank_Diff.p", "w"))
pickle.dump(stats_dict, open("./PickleLocker/ActiveLearning_Stats.p", "w"))