-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
138 lines (106 loc) · 3.71 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
class GCN(nn.Module):
def __init__(self, in_ft, out_ft, act, bias=True):
super(GCN, self).__init__()
self.fc = nn.Linear(in_ft, out_ft, bias=False)
self.act = nn.PReLU() if act == 'prelu' else act
if bias:
self.bias = nn.Parameter(torch.FloatTensor(out_ft))
self.bias.data.fill_(0.0)
else:
self.register_parameter('bias', None)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, seq, adj, sparse=False):
seq_fts = self.fc(seq)
if sparse:
out = torch.unsqueeze(torch.spmm(adj, torch.squeeze(seq_fts, 0)), 0)
else:
out = torch.bmm(adj, seq_fts)
if self.bias is not None:
out += self.bias
return self.act(out)
class AvgReadout(nn.Module):
def __init__(self):
super(AvgReadout, self).__init__()
def forward(self, seq):
return torch.mean(seq, 1)
class MaxReadout(nn.Module):
def __init__(self):
super(MaxReadout, self).__init__()
def forward(self, seq):
return torch.max(seq,1).values
class MinReadout(nn.Module):
def __init__(self):
super(MinReadout, self).__init__()
def forward(self, seq):
return torch.min(seq, 1).values
class WSReadout(nn.Module):
def __init__(self):
super(WSReadout, self).__init__()
def forward(self, seq, query):
query = query.permute(0,2,1)
sim = torch.matmul(seq,query)
sim = F.softmax(sim,dim=1)
sim = sim.repeat(1, 1, 64)
out = torch.mul(seq,sim)
out = torch.sum(out,1)
return out
class Discriminator(nn.Module):
def __init__(self, n_h, negsamp_round):
super(Discriminator, self).__init__()
self.f_k = nn.Bilinear(n_h, n_h, 1)
for m in self.modules():
self.weights_init(m)
self.negsamp_round = negsamp_round
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, c, h_pl):
scs = []
# positive
scs.append(self.f_k(h_pl, c))
# negative
c_mi = c
for _ in range(self.negsamp_round):
c_mi = torch.cat((c_mi[-2:-1,:], c_mi[:-1,:]),0)
scs.append(self.f_k(h_pl, c_mi))
logits = torch.cat(tuple(scs))
return logits
class Model(nn.Module):
def __init__(self, n_in, n_h, activation, negsamp_round, readout):
super(Model, self).__init__()
self.read_mode = readout
self.gcn = GCN(n_in, n_h, activation)
if readout == 'max':
self.read = MaxReadout()
elif readout == 'min':
self.read = MinReadout()
elif readout == 'avg':
self.read = AvgReadout()
elif readout == 'weighted_sum':
self.read = WSReadout()
self.disc = Discriminator(n_h, negsamp_round)
def forward(self, seq1, adj, sparse=False):
h_1 = self.gcn(seq1, adj, sparse)
if self.read_mode != 'weighted_sum':
c = self.read(h_1[:,: -1,:])
h_mv = h_1[:,-1,:]
else:
h_mv = h_1[:, -1, :]
c = self.read(h_1[:,: -1,:], h_1[:,-2: -1, :])
ret = self.disc(c, h_mv)
# print(h_1[:,-1,:].shape)
# sys.exit()
return ret, h_1[:,-1,:]
# return ret