forked from axolotl-ai-cloud/axolotl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.qmd
533 lines (465 loc) · 24.3 KB
/
config.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
---
title: Config options
description: A complete list of all configuration options.
---
```yaml
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# This can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# If the base_model repo on hf hub doesn't include configuration .json files,
# You can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# You can specify to choose a specific model revision from huggingface hub
revision_of_model:
# Optional tokenizer configuration path in case you want to use a different tokenizer
# than the one defined in the base model
tokenizer_config:
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# use_fast option for tokenizer loading from_pretrained, default to True
tokenizer_use_fast:
# Whether to use the legacy tokenizer setting, defaults to True
tokenizer_legacy:
# Resize the model embeddings when new tokens are added to multiples of 32
# This is reported to improve training speed on some models
resize_token_embeddings_to_32x:
# (Internal use only)
# Used to identify which the model is based on
is_falcon_derived_model:
is_llama_derived_model:
is_qwen_derived_model:
# Please note that if you set this to true, `padding_side` will be set to "left" by default
is_mistral_derived_model:
# optional overrides to the base model configuration
overrides_of_model_config:
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
rope_scaling:
type: # linear | dynamic
factor: # float
# optional overrides to the bnb 4bit quantization configuration
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
bnb_config_kwargs:
# These are default values
llm_int8_has_fp16_weight: false
bnb_4bit_quant_type: nf4
bnb_4bit_use_double_quant: true
# Whether you are training a 4-bit GPTQ quantized model
gptq: true
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# Use bitsandbytes 4 bit
load_in_4bit:
# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere
# No AMP (automatic mixed precision)
bfloat16: true # require >=ampere
float16: true
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
gpu_memory_limit: 20GiB
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
lora_on_cpu: true
# A list of one or more datasets to finetune the model with
datasets:
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
- path: vicgalle/alpaca-gpt4
# The type of prompt to use for training. [alpaca, gpteacher, oasst, reflection]
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
data_files: # Optional[str] path to source data files
shards: # Optional[int] number of shards to split data into
name: # Optional[str] name of dataset configuration to load
train_on_split: train # Optional[str] name of dataset split to load from
revision: # Optional[str] The specific revision of the dataset to use when loading from the Hugging Face Hub. This can be a commit hash, tag, or branch name. If not specified, the latest version will be used. This parameter is ignored for local datasets.
trust_remote_code: # Optional[bool] Trust remote code for untrusted source
# Custom user instruction prompt
- path: repo
type:
# The below are defaults. only set what's needed if you use a different column name.
system_prompt: ""
system_format: "{system}"
field_system: system
field_instruction: instruction
field_input: input
field_output: output
# Customizable to be single line or multi-line
# Use {instruction}/{input} as key to be replaced
# 'format' can include {input}
format: |-
User: {instruction} {input}
Assistant:
# 'no_input_format' cannot include {input}
no_input_format: "{instruction} "
# For `completion` datsets only, uses the provided field instead of `text` column
field:
# Using chat template
- path: ...
# Set type to `chat_template` to use this strategy
type: chat_template
# Specify the name of the chat template to use
# The name of the chat template to use for training, following values are supported:
# - tokenizer_default: Uses the chat template that is available in the tokenizer_config.json. If the chat template is not available in the tokenizer, it will raise an error. This is the default.
# - alpaca/inst/chatml/gemma/cohere/llama3/phi_3/deepseek_v2/jamba: These chat templates are available in the axolotl codebase at src/axolotl/utils/chat_templates.py
# - tokenizer_default_fallback_*: where * is the name of the chat template to fallback to if the tokenizer does not have a chat template else default to tokenizer. E.g. tokenizer_default_fallback_chatml.
# - jinja: Uses a custom jinja template for the chat template. The custom jinja template should be provided in the chat_template_jinja field.
chat_template: tokenizer_default
# Custom jinja chat template. Used only if `chat_template: jinja` or empty.
chat_template_jinja:
# Key containing the messages (default: "messages")
field_messages: messages
# Key for role in each message (default: "role")
message_field_role: role
# Key for content in each message (default: "content")
message_field_content: content
# Optional[Dict[str, List]]. Roles mapping in the messages. The default is:
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant"]
system: ["system"]
tool: ["tool"]
# IMPORTANT: The following fields determine which parts of the conversation to train on.
# Priority order: message_field_training > message_field_training_detail > train_on_inputs or role in roles_to_train
# See examples at `docs/dataset-formats/conversation.qmd`
# Note: If the below 4 fields are empty, defaults to training only on the last message.
# Optional[List[str]]. Roles to train on. The tokens from these roles will be considered for the loss.
roles_to_train: ["assistant"] # default
# Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
# - all: train on all EOS tokens
# - turn (default): train on the EOS token at the end of each trainable turn
# - last: train on the last EOS token in the conversation
train_on_eos: last
# The key in the message turn that indicates via boolean whether tokens of a turn should be considered for training. Useful to selectively train on certain turns besides the `roles_to_train`.
message_field_training: training
# The key in the message turn that contains the training details. Useful to selectively train on certain tokens in a turn.
# The value of the key is a List[Dict] containing `begin_offset` (start character index in content), `end_offset` (end character index in content), and `train` (boolean whether to train).
message_field_training_detail: train_detail
# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
shuffle_merged_datasets: true
Deduplicates datasets and test_datasets with identical entries.
dataset_exact_deduplication: true
# A list of one or more datasets to eval the model with.
# You can use either test_datasets, or val_set_size, but not both.
test_datasets:
- path: /workspace/data/eval.jsonl
ds_type: json
# You need to specify a split. For "json" datasets the default split is called "train".
split: train
type: completion
data_files:
- /workspace/data/eval.jsonl
# use RL training: 'dpo', 'ipo', 'kto'
rl:
# whether to perform weighting if doing DPO training. Boolean.
dpo_use_weighting:
# The name of the chat template to use for training, following values are supported:
# - tokenizer_default: Uses the chat template that is available in the tokenizer_config.json. If the chat template is not available in the tokenizer, it will raise an error. This is the default value.
# - alpaca/inst/chatml/gemma/cohere/llama3/phi_3/deepseek_v2/jamba: These chat templates are available in the axolotl codebase at src/axolotl/utils/chat_templates.py
# - tokenizer_default_fallback_*: where * is the name of the chat template to fallback to. E.g. tokenizer_default_fallback_chatml. This is useful when the chat template is not available in the tokenizer.
# - jinja: Uses a custom jinja template for the chat template. The custom jinja template should be provided in the chat_template_jinja field.
# The selected chat template will be saved to the tokenizer_config.json for easier inferencing
# Note: It is recommended to set train_on_inputs to true when using a chat template that is different from the model's default chat template.
chat_template: tokenizer_default
# custom jinja template for chat template. This will be only used if chat_template is set to `jinja` or `null` (in which case chat_template is automatically set to `jinja`). Default is null.
chat_template_jinja: null
# Changes the default system message
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
# Axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# Push prepared dataset to hub
push_dataset_to_hub: # repo path
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
# if not set.
dataset_processes: # defaults to os.cpu_count() if not set
# Keep dataset in memory while preprocessing
# Only needed if cached dataset is taking too much storage
dataset_keep_in_memory:
# push checkpoints to hub
hub_model_id: # private repo path to push finetuned model
# how to push checkpoints to hub
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
hub_strategy:
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:
# The maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# Pad inputs so each step uses constant sized buffers
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
pad_to_sequence_len:
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing:
# Set to 'false' if getting errors during eval with sample_packing on.
eval_sample_packing:
# You can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
sample_packing_eff_est:
total_num_tokens:
# Increasing the following values helps with packing, but usually only slightly (<%1.)
# The number of samples packed at a time.
sample_packing_group_size: 100000
# The number of samples which can be packed into one sequence. Increase if using a large sequence_len with many short samples.
sample_packing_bin_size: 200
# Use batch flattening for speedups when not using sample_packing
batch_flattening:
# Passed through to transformers when loading the model when launched without accelerate
# Use `sequential` when training w/ model parallelism to limit memory
device_map:
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
max_memory:
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# If you already have a lora model trained that you want to load, put that here.
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
lora_model_dir:
# LoRA hyperparameters
# For more details about the following options, see:
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
# - k_proj
# - o_proj
# - gate_proj
# - down_proj
# - up_proj
lora_target_linear: # If true, will target all linear modules
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
lora_modules_to_save:
# - embed_tokens
# - lm_head
lora_fan_in_fan_out: false
# LoRA+ hyperparameters
# For more details about the following options, see:
# https://arxiv.org/abs/2402.12354 and `src/axolotl/core/train_builder.py`
loraplus_lr_ratio: # loraplus learning rate ratio lr_B / lr_A. Recommended value is 2^4.
loraplus_lr_embedding: # loraplus learning rate for lora embedding layers. Default value is 1e-6.
peft:
# Configuration options for loftq initialization for LoRA
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
loftq_config:
loftq_bits: # typically 4 bits
# ReLoRA configuration
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
relora_steps: # Number of steps per ReLoRA restart
relora_warmup_steps: # Number of per-restart warmup steps
relora_anneal_steps: # Number of anneal steps for each relora cycle
relora_prune_ratio: # threshold for optimizer magnitude when pruning
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
# wandb configuration if you're using it
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: # Your wandb project name
wandb_entity: # A wandb Team name if using a Team
wandb_watch:
wandb_name: # Set the name of your wandb run
wandb_run_id: # Set the ID of your wandb run
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
# mlflow configuration if you're using it
mlflow_tracking_uri: # URI to mlflow
mlflow_experiment_name: # Your experiment name
mlflow_run_name: # Your run name
hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry
# Comet configuration if you're using it
# Make sure your `COMET_API_KEY` environment variable is set (recommended) or you login to Comet with `comet login`.
# Check out our documentation for more details https://www.comet.com/docs/v2/api-and-sdk/python-sdk/reference/Experiment-Creation/#comet_ml.start
use_comet: # Enable or disable Comet integration.
comet_api_key: # API key for Comet. Recommended to set via `comet login`.
comet_workspace: # Workspace name in Comet. Defaults to the user's default workspace.
comet_project_name: # Project name in Comet. Defaults to Uncategorized.
comet_experiment_key: # Identifier for the experiment. Used to append data to an existing experiment or control the key of new experiments. Default to a random key.
comet_mode: # Create a new experiment ("create") or log to an existing one ("get"). Default ("get_or_create") auto-selects based on configuration.
comet_online: # Set to True to log data to Comet server, or False for offline storage. Default is True.
comet_experiment_config: # Dictionary for additional configuration settings, see the doc for more details.
# Where to save the full-finetuned model to
output_dir: ./completed-model
# Whether to use torch.compile and which backend to use
# setting to `auto` will enable torch compile when torch>=2.5.1
torch_compile: # Optional[Union[Literal["auto"], bool]]
torch_compile_backend: # Optional[str]
# Training hyperparameters
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
gradient_accumulation_steps: 1
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
# Batch size per gpu = micro_batch_size * gradient_accumulation_steps
micro_batch_size: 2
eval_batch_size:
num_epochs: 4
warmup_steps: 100 # cannot use with warmup_ratio
warmup_ratio: 0.05 # cannot use with warmup_steps
learning_rate: 0.00003
lr_quadratic_warmup:
logging_steps:
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
save_strategy: # Set to `"no"` to skip checkpoint saves
save_steps: # Leave empty to save at each epoch
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
save_total_limit: # Checkpoints saved at a time
# Maximum number of iterations to train for. It precedes num_epochs which means that
# if both are set, num_epochs will not be guaranteed.
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
max_steps:
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", "chrf", "perplexity"]
profiler_steps: # enable the pytorch profiler to capture the first N steps of training to the output_dir.
# see https://pytorch.org/blog/understanding-gpu-memory-1/ for more information
# snapshots can be visualized @ https://pytorch.org/memory_viz
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
# Save model as safetensors (require safetensors package)
save_safetensors:
# Whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# Group similarly sized data to minimize padding.
# May be slower to start, as it must download and sort the entire dataset.
# Note that training loss may have an oscillating pattern with this enabled.
group_by_length: false
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
gradient_checkpointing: false
# additional kwargs to pass to the trainer for gradient checkpointing
# gradient_checkpointing_kwargs:
# use_reentrant: true
# Stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3
# Specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf)
# For one_cycle optim
lr_div_factor: # Learning rate div factor
# Specify optimizer
# Valid values are driven by the Transformers OptimizerNames class, see:
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
#
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
# in the examples/ for your model and fine-tuning use case.
#
# Valid values for 'optimizer' include:
# - adamw_hf
# - adamw_torch
# - adamw_torch_fused
# - adamw_torch_xla
# - adamw_apex_fused
# - adopt_adamw (an EXPERIMENTAL optimizer, only for torch version >= 2.5.1)
# - adafactor
# - adamw_anyprecision
# - sgd
# - adagrad
# - adamw_bnb_8bit
# - lion_8bit
# - lion_32bit
# - paged_adamw_32bit
# - paged_adamw_8bit
# - paged_lion_32bit
# - paged_lion_8bit
# - galore_adamw
# - galore_adamw_8bit
# - galore_adafactor
# - galore_adamw_layerwise
# - galore_adamw_8bit_layerwise
# - galore_adafactor_layerwise
optimizer:
# Dictionary of arguments to pass to the optimizer
optim_args:
# For Galore Optimizers the following optim_args are available
# rank: # type: int
# update_proj_gap # type: int
# scale # type: float
# proj_type: # type: str, default = std
# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
optim_target_modules:
# - self_attn # for llama
# - mlp
# Specify weight decay
weight_decay:
# adamw hyperparams
adam_beta1:
adam_beta2:
adam_epsilon:
# Gradient clipping max norm
max_grad_norm:
# Augmentation techniques
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
# currently only supported on Llama and Mistral
neftune_noise_alpha:
# Whether to bettertransformers
flash_optimum:
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
flash_attention:
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
# Whether to use scaled-dot-product attention
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
sdp_attention:
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
s2_attention:
# Resume from a specific checkpoint dir
resume_from_checkpoint:
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
# Be careful with this being turned on between different models.
auto_resume_from_checkpoints: false
# Don't mess with this, it's here for accelerate and torchrun
local_rank:
# Add or change special tokens.
# If you add tokens here, you don't need to add them to the `tokens` list.
special_tokens:
# bos_token: "<s>"
# eos_token: "</s>"
# unk_token: "<unk>"
# pad_token: "[PAD]"
# Add extra tokens.
tokens:
# FSDP
fsdp:
fsdp_config:
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
deepspeed:
# Advanced DDP Arguments
ddp_timeout:
ddp_bucket_cap_mb:
ddp_broadcast_buffers:
# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
pretraining_dataset:
# Debug mode
debug:
# Seed
seed:
# Allow overwrite yml config using from cli
strict:
```