-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfolder2lmdb.py
170 lines (137 loc) · 4.88 KB
/
folder2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import os.path as osp
import os, sys
import os.path as osp
from PIL import Image
import six
import string
import lmdb
import pickle
import umsgpack
import tqdm
import pyarrow as pa
from os.path import basename
import torch
import torch.utils.data as data
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from torchvision.datasets import ImageFolder
from torchvision import transforms, datasets
class ImageFolderWithPaths(datasets.ImageFolder):
def __getitem__(self, index):
original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)
path = self.imgs[index][0]
tuple_with_path = (original_tuple + (path,))
return tuple_with_path
def loads_pyarrow(buf):
"""
Args:
buf: the output of `dumps`.
"""
return pa.deserialize(buf)
def read_txt(fname):
map = {}
with open(fname) as f:
content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
for line in content:
img, idx = line.split(" ")
map[img] = idx
return map
class ImageFolderLMDB(data.Dataset):
def __init__(self, db_path, transform=None, target_transform=None):
self.db_path = db_path
self.env = lmdb.open(db_path, subdir=osp.isdir(db_path),
readonly=True, lock=False,
readahead=False, meminit=False)
with self.env.begin(write=False) as txn:
# self.length = txn.stat()['entries'] - 1
self.length = loads_pyarrow(txn.get(b'__len__'))
# self.keys = umsgpack.unpackb(txn.get(b'__keys__'))
self.keys = loads_pyarrow(txn.get(b'__keys__'))
self.transform = transform
self.target_transform = target_transform
map_path = db_path[:-5] + "_images_idx.txt"
self.img2idx = read_txt(map_path)
def __getitem__(self, index):
img, target = None, None
env = self.env
with env.begin(write=False) as txn:
print("key", self.keys[index].decode("ascii"))
byteflow = txn.get(self.keys[index])
unpacked = loads_pyarrow(byteflow)
imgbuf = unpacked
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
import numpy as np
img = Image.open(buf).convert('RGB')
# img.save("img.jpg")
if self.transform is not None:
img = self.transform(img)
im2arr = np.array(img)
# print(im2arr.shape)
if self.target_transform is not None:
target = self.target_transform(target)
# return img, target
return im2arr
def __len__(self):
return self.length
def __repr__(self):
return self.__class__.__name__ + ' (' + self.db_path + ')'
def raw_reader(path):
with open(path, 'rb') as f:
bin_data = f.read()
return bin_data
def dumps_pyarrow(obj):
"""
Serialize an object.
Returns:
Implementation-dependent bytes-like object
"""
return pa.serialize(obj).to_buffer()
def folder2lmdb(dpath, name="train", write_frequency=5000):
all_imgpath = []
all_idxs = []
directory = osp.expanduser(osp.join(dpath, name))
print("Loading dataset from %s" % directory)
dataset = ImageFolderWithPaths(directory, loader=raw_reader)
data_loader = DataLoader(dataset, num_workers=16, collate_fn=lambda x: x)
lmdb_path = osp.join(dpath, "%s.lmdb" % name)
isdir = os.path.isdir(lmdb_path)
print("Generate LMDB to %s" % lmdb_path)
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=1099511627776 * 2, readonly=False,
meminit=False, map_async=True)
txn = db.begin(write=True)
for idx, data in enumerate(data_loader):
# print(type(data), data)
# image, label = data[0]
image, label, imgpath = data[0]
# print(image.shape)
imgpath = basename(imgpath)
all_imgpath.append(imgpath)
all_idxs.append(idx)
txn.put(u'{}'.format(idx).encode('ascii'), dumps_pyarrow(image))
# txn.put(u'{}'.format(imgpath).encode('ascii'), dumps_pyarrow(image))
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(data_loader)))
txn.commit()
txn = db.begin(write=True)
# finish iterating through dataset
txn.commit()
keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
with db.begin(write=True) as txn:
txn.put(b'__keys__', dumps_pyarrow(keys))
txn.put(b'__len__', dumps_pyarrow(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
fout = open(dpath + "/" + name + "_images_idx.txt", "w")
for img, idx in zip(all_imgpath, all_idxs):
fout.write("{} {}\n".format(img, idx))
fout.close()
import fire
if __name__ == '__main__':
fire.Fire(folder2lmdb)