-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
120 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import glob | ||
import os | ||
import time | ||
from collections import OrderedDict | ||
|
||
import numpy as np | ||
import torch | ||
import cv2 | ||
import argparse | ||
|
||
from natsort import natsort | ||
from skimage.metrics import structural_similarity as ssim | ||
from skimage.metrics import peak_signal_noise_ratio as psnr | ||
import lpips | ||
|
||
|
||
class Measure(): | ||
def __init__(self, net='alex', use_gpu=False): | ||
self.device = 'cuda' if use_gpu else 'cpu' | ||
self.model = lpips.LPIPS(net=net) | ||
self.model.to(self.device) | ||
|
||
def measure(self, imgA, imgB): | ||
return [float(f(imgA, imgB)) for f in [self.psnr, self.ssim, self.lpips]] | ||
|
||
def lpips(self, imgA, imgB, model=None): | ||
tA = t(imgA).to(self.device) | ||
tB = t(imgB).to(self.device) | ||
dist01 = self.model.forward(tA, tB).item() | ||
return dist01 | ||
|
||
def ssim(self, imgA, imgB): | ||
# multichannel: If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged. | ||
score, diff = ssim(imgA, imgB, full=True, multichannel=True) | ||
return score | ||
|
||
def psnr(self, imgA, imgB): | ||
psnr_val = psnr(imgA, imgB) | ||
return psnr_val | ||
|
||
|
||
def t(img): | ||
def to_4d(img): | ||
assert len(img.shape) == 3 | ||
assert img.dtype == np.uint8 | ||
img_new = np.expand_dims(img, axis=0) | ||
assert len(img_new.shape) == 4 | ||
return img_new | ||
|
||
def to_CHW(img): | ||
return np.transpose(img, [2, 0, 1]) | ||
|
||
def to_tensor(img): | ||
return torch.Tensor(img) | ||
|
||
return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1 | ||
|
||
|
||
def fiFindByWildcard(wildcard): | ||
return natsort.natsorted(glob.glob(wildcard, recursive=True)) | ||
|
||
|
||
def imread(path): | ||
return cv2.imread(path)[:, :, [2, 1, 0]] | ||
|
||
|
||
def format_result(psnr, ssim, lpips): | ||
return f'{psnr:0.2f}, {ssim:0.3f}, {lpips:0.3f}' | ||
|
||
def measure_dirs(dirA, dirB, use_gpu, verbose=False): | ||
if verbose: | ||
vprint = lambda x: print(x) | ||
else: | ||
vprint = lambda x: None | ||
|
||
|
||
t_init = time.time() | ||
|
||
paths_A = fiFindByWildcard(os.path.join(dirA, f'*.{type}')) | ||
paths_B = fiFindByWildcard(os.path.join(dirB, f'*.{type}')) | ||
|
||
vprint("Comparing: ") | ||
vprint(dirA) | ||
vprint(dirB) | ||
|
||
measure = Measure(use_gpu=use_gpu) | ||
|
||
results = [] | ||
for pathA, pathB in zip(paths_A, paths_B): | ||
result = OrderedDict() | ||
|
||
t = time.time() | ||
result['psnr'], result['ssim'], result['lpips'] = measure.measure(imread(pathA), imread(pathB)) | ||
d = time.time() - t | ||
vprint(f"{pathA.split('/')[-1]}, {pathB.split('/')[-1]}, {format_result(**result)}, {d:0.1f}") | ||
|
||
results.append(result) | ||
|
||
psnr = np.mean([result['psnr'] for result in results]) | ||
ssim = np.mean([result['ssim'] for result in results]) | ||
lpips = np.mean([result['lpips'] for result in results]) | ||
|
||
vprint(f"Final Result: {format_result(psnr, ssim, lpips)}, {time.time() - t_init:0.1f}s") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('-dirA', default='D:/NCHU/paper submit/ICIP 2022/evaluation/gt_mit', type=str) | ||
parser.add_argument('-dirB', default='D:/NCHU/paper submit/ICIP 2022/evaluation/enhanced_mit', type=str) | ||
parser.add_argument('-type', default='png') | ||
parser.add_argument('--use_gpu', default=True) | ||
args = parser.parse_args() | ||
|
||
dirA = args.dirA | ||
dirB = args.dirB | ||
type = args.type | ||
use_gpu = args.use_gpu | ||
|
||
if len(dirA) > 0 and len(dirB) > 0: | ||
measure_dirs(dirA, dirB, use_gpu=use_gpu, verbose=True) |