-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiPA_template_completer.R
153 lines (122 loc) · 5.55 KB
/
iPA_template_completer.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
#' Author: Fabian Schwendinger <
#' Intended for interpretablePA R-package <
#' GitHub: https://github.com/FSchwendinger/interpretablePA <
#' Purpose: Automate interpretablePA results generation based <
#' on GGIR part 2 output. <
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
#' INTRODUCTION
#' Use this script to create a csv file that can be used as input for
#' the interpretablePA R-package. The interpretablePA package will process
#' this csv to produce another csv file that allows you to compare your
#' accelerometer data (average acceleration and intensity gradient) against
#' our reference values, which are specific to age and sex.
#'
#' The output will be presented in terms of percentages of the predicted
#' values and Z-scores. These metrics are useful for assessing whether an
#' individual's physical activity level is within the expected range
#' compared to individuals of similar age and sex in the general population.
#'
#' After running the full script, the interpretablePA Shiny app will be run.
#' User should then go to '1) User data' and 'Cohort-level data (raw)'
#' and upload the csv file generated above. The csv file will be stored in
#' the working directory as 'interpretablePA_template_DATE.csv'.
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# USER INPUT SECTION
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# DETAILS ON DATA PREPARATION
#' To derive metrics relative to age- and sex-specific reference values,
#' interpretablePA needs the age and sex for each ID from your
#' part2_summary.csv file, which is produced by GGIR. Ensure that the IDs
#' match across both files. Specify the path to your file containing
#' the ID, age, and sex information. Also, provide the corresponding
#' column names in your data file to ensure accurate data processing.
#' The subject characteristics file may be in csv or xlsx/xls format.
# Set working directory
setwd("EXAMPLE_PATH")
# Path to your subject characteristics file
dat_path <- "EXAMPLE_PATH/data/subject_characteristics.csv"
col_name_id <- "ID" # Variable name of ID column
col_name_sex <- "sex" # Variable name of sex column
col_name_age <- "age" # Variable name of age column
# Specify in the following how male and female is coded in your file
user_sex_male <- "0" # encoding of male sex
user_sex_female <- "1" # encoding of female sex
# Path to your part2_summary.csv file generated by GGIR
part_2_path <- "EXAMPLE_PATH/data/part2_summary.csv"
#' No more user input is required beyond this line. After providing
#' the information above, you can use the 'Source button' to run the full script.
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# DO NOT MODIFY!!!
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# Function to install and load packages if they are not already loaded
install_and_load <- function(package) {
if (!require(package, character.only = TRUE)) {
install.packages(package)
library(package, character.only = TRUE)
}
}
# Load necessary packages
install_and_load("dplyr")
install_and_load("readxl")
# Generate template for interpretablePA
temp <- data.frame(
ID = character(),
sex = factor(levels = c("m", "f")),
age = numeric()
)
# Determine the file type based on the extension
file_extension <- tolower(tools::file_ext(dat_path))
# Read subject characteristics data based on file type
if (file_extension %in% c("csv")) {
subject_data <- read.csv(dat_path, stringsAsFactors = FALSE)
} else if (file_extension %in% c("xls", "xlsx")) {
subject_data <- readxl::read_excel(dat_path)
} else {
stop("Unsupported file type.")
}
# Rename and transform subject_data to match the template structure
subject_data <- within(subject_data, {
ID <- as.character(get(col_name_id))
sex <-
factor(
get(col_name_sex),
levels = c(user_sex_male, user_sex_female),
labels = c("m", "f")
)
age <- as.numeric(get(col_name_age))
})
# Subset subject_data to keep only needed columns
subject_data <-
data.frame(ID = subject_data$ID,
sex = subject_data$sex,
age = subject_data$age)
# Combine the loaded and formatted data with the template
temp <- rbind(temp, subject_data)
# Read and preprocess GGIR part 2 data
part_2 <- read.csv(part_2_path, stringsAsFactors = FALSE)
part_2 <- within(part_2, {
ID <- trimws(ID)
avacc <- as.numeric(AD_mean_ENMO_mg_0.24hr)
ig <- as.numeric(AD_ig_gradient_ENMO_0.24hr)
})
# Keep only the needed columns from part_2
part_2 <- part_2[c("ID", "avacc", "ig")]
# Merge temp with part_2 data
temp <- merge(temp, part_2, by = "ID")
# Write the combined data frame to a csv file
write.csv(temp,
sprintf("interpretablePA_template_%s.csv", Sys.Date()),
row.names = FALSE)
# Install the interpretablePA package from GitHub if not already installed
if (!require("interpretablePA", character.only = TRUE)) {
install.packages("remotes")
remotes::install_github("FSchwendinger/interpretablePA")
library(interpretablePA, character.only = TRUE)
}
# Load interpretablePA and prepare for analysis
library(interpretablePA)
interpret.pa() #This will call the interpretablePA Shiny app
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
# END.
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<