-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun.py
942 lines (799 loc) · 41.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import re
import shutil
import csv
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from sklearn.metrics import f1_score,precision_score,recall_score,accuracy_score
from sklearn.neighbors import KNeighborsClassifier
import json
from scipy import spatial
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
import warnings
warnings.filterwarnings("ignore")
from tqdm import tqdm, trange
import multiprocessing
from model import Model,Model_train_3
cpu_cont = multiprocessing.cpu_count()
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
}
class InputFeatures(object):
def __init__(self,
input_tokens,
input_ids,
idx,
label,
epoch
):
self.input_tokens = input_tokens
self.input_ids = input_ids
self.idx=str(idx)
self.label=label
self.epoch = epoch
def convert_examples_to_features(js,tokenizer,args,epoch):
code=' '.join(js[2].split())
code_tokens=tokenizer.tokenize(code)[:args.block_size-2]
source_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]
source_ids = tokenizer.convert_tokens_to_ids(source_tokens)
padding_length = args.block_size - len(source_ids)
source_ids+=[tokenizer.pad_token_id]*padding_length
label = int(js[0])
return InputFeatures(source_tokens,source_ids,js[1],label,epoch)
def calculate(examles):
cnt_0 = 0
cnt_1 = 0
for example in examles:
if example.label == 0:
cnt_0 += 1
if example.label == 1:
cnt_1 += 1
print('*' * 100)
print('Positive samples:',cnt_1)
print('Negative samples:',cnt_0)
print('*' * 100)
class TextDataset(Dataset):
def __init__(self, tokenizer, args, file_path=None, type = None,
indexes_la_first_fintune =None,indexes_rn_step1 =None,epoch = None,dataset_again = None):
self.examples = []
self.indexes_la = []
index = 0
if type == 'iterative_finetune':
self.examples = dataset_again.examples
with open(file_path, "r", encoding='ISO-8859-1') as f:
for line in f.readlines():
line = line.strip().split('<CODESPLIT>')
example = convert_examples_to_features(line,tokenizer,args,epoch)
# the Second(Third) Finetune just need labeled samples and RN samples
if type == 'second_finetune' or type == 'third_finetune' or type == 'iterative_finetune':
if index in indexes_la_first_fintune:
example.label = 1
self.examples.append(example)
if index in indexes_rn_step1:
example.label = 0
self.examples.append(example)
elif type == 'iterative_finetune_remain':
if index not in indexes_la_first_fintune and index not in indexes_rn_step1:
example.label = -1
self.examples.append(example)
# the First Finetune,the Step1,the Evaluate and the Write need all the samples
else:
self.examples.append(example)
if int(example.label) == 1:
self.indexes_la.append(index)
index += 1
# choose the labeled samples randomly if First Fintune
if type == 'first_finetune':
random.shuffle(self.indexes_la)
self.indexes_la = self.indexes_la[:round(len(self.indexes_la)*args.label_ratio)]
# write indexes of labeled samples to the txt
path = os.path.join(args.labels_file,'indexes_la.txt')
writeindex(path,self.indexes_la)
for i in range(len(self.examples)):
if i not in self.indexes_la:
self.examples[i].label = 0
# get the labeled samples based on the First Fintune if Step1
if type == 'step1':
for i in range(len(self.examples)):
if i not in indexes_la_first_fintune:
self.examples[i].label = 0
calculate(self.examples)
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
return torch.tensor(self.examples[i].input_ids),torch.tensor(self.examples[i].label),torch.tensor(self.examples[i].epoch)
def getlabel(self):
return self.indexes_la
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def writeindex(file_path,indexes):
f=open(file_path,"w")
for index in indexes:
f.write(str(index)+'\n')
f.close()
def readindex(file_path):
f=open(file_path, encoding='gbk')
indexes=[]
for line in f:
indexes.append(int(line.strip()))
return indexes
def Select(model, train_dataset, args):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
train_sampler = SequentialSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.eval_batch_size)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
""" find RN samples """
labels=[]
features=[]
for batch in tqdm(train_dataloader,total=len(train_dataloader)):
inputs = batch[0].to(args.device)
label=batch[1].to(args.device)
with torch.no_grad():
_ ,feature = model(inputs)
labels.append(label.cpu().numpy())
features.append(feature.cpu().numpy())
labels_1d = np.concatenate(labels).flatten()
features_2d = np.concatenate(features)
# get the indexes of labeled samples and unlabeled samples
indexes_la = np.where(labels_1d == 1)
indexes_la_1d = np.array(indexes_la).flatten()
indexes_un = np.where(labels_1d == 0)
indexes_un_1d = np.array(indexes_un).flatten()
indexes_rn = []
# get the features of labeled samples and unlabeled samples
train_xs_la = features_2d[indexes_la]
train_xs_un = features_2d[indexes_un]
knn_k = int(round(0.3 * (len(train_xs_la))))
knn = KNeighborsClassifier(n_neighbors=knn_k)
knn.fit(train_xs_la, indexes_la_1d)
distances_sum ,indexes_knn = knn.kneighbors(train_xs_un, knn_k, True)
distances_sum = distances_sum.sum(axis = 1)
train_xs_la_near_means = []
for indexes in indexes_knn:
indexes_1d = (np.array(indexes).flatten()).tolist()
train_xs_la_near = train_xs_la[indexes_1d]
train_xs_la_near_mean = train_xs_la_near.mean(axis = 0)
train_xs_la_near_means.append(train_xs_la_near_mean)
distances_mean = np.linalg.norm(train_xs_un - train_xs_la_near_means, axis=1,ord = 1)
standards = sorted(distances_mean)
standards.reverse()
ratio_k = 1
ratio = args.label_ratio * ratio_k * ((1-args.label_ratio)*args.P_num + args.N_num) / (args.label_ratio*args.P_num)
standard_mean = standards[round(len(indexes_la_1d)*ratio)]
standards = sorted(distances_sum)
standards.reverse()
ratio_k = 1
ratio = args.label_ratio * ratio_k * ((1-args.label_ratio)*args.P_num + args.N_num) / (args.label_ratio*args.P_num)
standard_sum = standards[round(len(indexes_la_1d)*ratio)]
# get RN samples' indexes
for index in range(len(indexes_un_1d)):
if distances_mean[index] > standard_mean and distances_sum[index] > standard_sum:
indexes_rn.append(indexes_un_1d[index])
return indexes_rn
def train(args, train_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
batch_size=args.train_batch_size,num_workers=4,pin_memory=True)
args.max_steps=args.epoch*len( train_dataloader)
args.save_steps=len( train_dataloader)
args.warmup_steps=len( train_dataloader)
args.logging_steps=len( train_dataloader)
args.num_train_epochs=args.epoch
model.to(args.device)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,
num_training_steps=args.max_steps)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
if os.path.exists(scheduler_last):
scheduler.load_state_dict(torch.load(scheduler_last))
if os.path.exists(optimizer_last):
optimizer.load_state_dict(torch.load(optimizer_last))
global_step = args.start_step
tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
best_mrr=0.0
best_acc=0.0
model.zero_grad()
for idx in range(args.start_epoch, int(args.num_train_epochs)):
bar = tqdm(train_dataloader,total=len(train_dataloader))
tr_num=0
train_loss=0
for step, batch in enumerate(bar):
# inputs = batch[0].to(args.device)
inputs = batch[0].to(args.device)
labels=batch[1].to(args.device)
model.train()
loss, _ , _ = model(inputs,labels)
if args.n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
tr_num+=1
train_loss+=loss.item()
if avg_loss==0:
avg_loss=tr_loss
avg_loss=round(train_loss/tr_num,5)
bar.set_description("epoch {} loss {}".format(idx,avg_loss))
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
output_flag=True
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logging_loss = tr_loss
tr_nb=global_step
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
if args.local_rank == -1 and args.evaluate_during_training:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
logger.info(" %s = %s", key, round(value,4))
if results['eval_acc']>best_acc:
best_acc=results['eval_acc']
logger.info(" "+"*"*20)
logger.info(" Best acc:%s",round(best_acc,4))
logger.info(" "+"*"*20)
checkpoint_prefix = 'checkpoint-best-acc'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,'module') else model
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
torch.save(model_to_save.state_dict(), output_dir)
logger.info("Saving model checkpoint to %s", output_dir)
logger.info("Fintuned model on the test set:")
evaluate(args,model,tokenizer,type='eval')
evaluate(args,model,tokenizer,type='test')
def train_iterative(args, train_dataset, model, epoch_now = None):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
batch_size=args.train_batch_size,num_workers=4,pin_memory=True)
# args.max_steps=args.epoch*len( train_dataloader)
args.max_steps=1*len( train_dataloader)
args.save_steps=len( train_dataloader)
args.warmup_steps=len( train_dataloader)
args.logging_steps=len( train_dataloader)
# args.num_train_epochs=args.epoch
args.num_train_epochs=1
model.to(args.device)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,
num_training_steps=args.max_steps)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')
if os.path.exists(scheduler_last):
scheduler.load_state_dict(torch.load(scheduler_last))
if os.path.exists(optimizer_last):
optimizer.load_state_dict(torch.load(optimizer_last))
global_step = args.start_step
tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0
best_mrr=0.0
best_acc=0.0
model.zero_grad()
logits = []
for idx in range(args.start_epoch, int(args.num_train_epochs)):
bar = tqdm(train_dataloader,total=len(train_dataloader))
tr_num=0
train_loss=0
for step, batch in enumerate(bar):
inputs = batch[0].to(args.device)
labels=batch[1].to(args.device)
epochs_now = batch[2].to(args.device)
model.train()
loss, logit , _ = model(inputs,labels,epochs_now = epochs_now,epoch_max = args.epoch,type = 'do_train_iterative')
logits.append(logit.cpu().detach().numpy())
if args.n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
tr_num+=1
train_loss+=loss.item()
if avg_loss==0:
avg_loss=tr_loss
avg_loss=round(train_loss/tr_num,5)
bar.set_description("epoch {} loss {}".format(epoch_now,avg_loss))
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
output_flag=True
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logging_loss = tr_loss
tr_nb=global_step
logits=np.concatenate(logits,0)
probs_la = []
probs_rn = []
for i in logits:
if i >=0.5:
probs_la.append(i)
if i <0.5:
probs_rn.append(i)
probs_la = sorted(probs_la)
prob_la = probs_la[round(0.20*len(probs_la))]
probs_rn = sorted(probs_rn)
prob_rn = probs_rn[round(0.80*len(probs_rn))]
print('prob_la',prob_la)
print('prob_rn',prob_rn)
return prob_la,prob_rn
def evaluate(args, model, tokenizer,type = 'eval'):
eval_output_dir = args.output_dir
if type == 'test':
eval_dataset = TextDataset(tokenizer, args,args.test_data_file, epoch=-1)
elif type == 'eval':
eval_dataset = TextDataset(tokenizer, args,args.eval_data_file, epoch=-1)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
if args.n_gpu > 1 and args.evaluate_during_training is False:
model = torch.nn.DataParallel(model)
logger.info("***** Running evaluation *****")
logger.info(" Evaluation type = %s", type)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
logits=[]
labels=[]
for batch in eval_dataloader:
inputs = batch[0].to(args.device)
label=batch[1].to(args.device)
with torch.no_grad():
lm_loss,logit,context_embeddings = model(inputs,label)
eval_loss += lm_loss.mean().item()
logits.append(logit.cpu().numpy())
labels.append(label.cpu().numpy())
nb_eval_steps += 1
labels_1d = np.concatenate(labels).flatten()
logits_1d = np.concatenate(logits).flatten()
logits=np.concatenate(logits,0)
labels=np.concatenate(labels,0)
preds=logits[:,0]>0.5
eval_acc=np.mean(labels==preds)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
result = {
"eval_loss": float(perplexity),
"eval_acc":round(eval_acc,4),
}
preds = np.zeros(labels_1d.shape[0])
for index in range(labels_1d.shape[0]):
if logits_1d[index] < 0.5:
preds[index] = 0
else:
preds[index] = 1
acc = accuracy_score(labels_1d, preds)
pre = precision_score(labels_1d, preds)
rec = recall_score(labels_1d, preds)
f1 = f1_score(labels_1d, preds)
print("acc:",acc)
print("pre:",pre)
print("rec:",rec)
print("f1:",f1)
return result
def iterative(args, model, tokenizer,eval_dataset=None,indexes_la=None,indexes_rn=None,indexes_un=None,prob_la=None,prob_rn=None):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
if args.n_gpu > 1 and args.evaluate_during_training is False:
model = torch.nn.DataParallel(model)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
logits=[]
for batch in eval_dataloader:
inputs = batch[0].to(args.device)
with torch.no_grad():
logit,_ = model(inputs)
logits.append(logit.cpu().numpy())
logits=np.concatenate(logits,0)
# RP and RN increase simultaneously according to the threshold
cnt_rp = 0
cnt_rn = 0
labels= []
indexes_rn_add = []
indexes_la_add = []
logits_sort = sorted(logits)
logits_sort.reverse()
for i in range(len(logits)):
if logits[i]>=0.5:
labels.append(1)
else:
labels.append(0)
for i in range(len(labels)):
if labels[i] == 0 and logits[i]<=prob_rn:
indexes_rn.append(indexes_un[i])
indexes_rn_add.append(indexes_un[i])
cnt_rn += 1
ratio = args.label_ratio*args.P_num / ((1-args.label_ratio)*args.P_num + args.N_num)
cnt_rp = round(cnt_rn * ratio)
standard = logits_sort[cnt_rp]
for i in range(len(logits)):
if logits[i] >= standard:
indexes_la.append(indexes_un[i])
indexes_la_add.append(indexes_un[i])
indexes_un = []
for i in range(args.P_num+args.N_num):
if i not in indexes_la and i not in indexes_rn:
indexes_un.append(i)
return indexes_la,indexes_rn,indexes_un,indexes_la_add,indexes_rn_add
def main():
parser = argparse.ArgumentParser()
""" Required parameters """
parser.add_argument("--train_data_file", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--eval_data_file", default=None, type=str, required=True,
help="The input valid data file (a text file).")
parser.add_argument("--test_data_file", default=None, type=str, required=True,
help="The input test data file (a text file).")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
""" Other parameters """
parser.add_argument("--labels_file", default=None, type=str,
help="The labels file.")
parser.add_argument("--label_ratio", default=None, type=float,
help="The label ratio")
parser.add_argument("--do_train_1", action='store_true',
help="Whether to run first training.")
parser.add_argument("--do_step1", action='store_true',
help="Whether to do step1.")
parser.add_argument("--do_train_2", action='store_true',
help="Whether to run second training.")
parser.add_argument("--do_train_3", action='store_true',
help="Whether to run third training.")
parser.add_argument("--do_train_iterative", action='store_true',
help="Whether to run iterative training.")
parser.add_argument("--do_test", action='store_true',
help="Whether to test.")
parser.add_argument("--P_num", default=-1, type=int,
help="num of P")
parser.add_argument("--N_num", default=-1, type=int,
help="num of N")
parser.add_argument("--model_type", default="bert", type=str,
help="The model architecture to be fine-tuned.")
parser.add_argument("--model_name_or_path", default=None, type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.15,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--config_name", default="", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--block_size", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--train_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--eval_batch_size", default=4, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument('--save_total_limit', type=int, default=None,
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--epoch', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
""" basic settings """
if args.server_ip and args.server_port:
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu
args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
set_seed(args.seed)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
args.start_epoch = 0
args.start_step = 0
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
args.config_name = os.path.join(checkpoint_last, 'config.json')
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
with open(idx_file, encoding='utf-8') as idxf:
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
step_file = os.path.join(checkpoint_last, 'step_file.txt')
if os.path.exists(step_file):
with open(step_file, encoding='utf-8') as stepf:
args.start_step = int(stepf.readlines()[0].strip())
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None)
config.num_labels=1
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.block_size <= 0:
args.block_size = tokenizer.max_len_single_sentence
args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)
if args.model_name_or_path:
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
else:
model = model_class(config)
if args.do_train_1 or args.do_step1 or args.do_train_2 or args.do_train_iterative:
model=Model(model,config,tokenizer,args)
if args.do_train_3 or args.do_test:
model=Model_train_3(model,config,tokenizer,args)
if args.local_rank == 0:
torch.distributed.barrier()
logger.info("Training/evaluation parameters %s", args)
""" First finetune """
if args.do_train_1:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.local_rank == 0:
torch.distributed.barrier()
# get the labeled train dataset, indexes of labeled data
train_dataset = TextDataset(tokenizer, args,args.train_data_file,'first_finetune',epoch=-1)
indexes_la = train_dataset.getlabel()
# train the model based on the labeled train dataset
train(args, train_dataset, model, tokenizer)
""" select RN samples based on the Step1 method """
if args.do_step1:
# load the first fintuned model
logger.info("select RN samples")
checkpoint_prefix = 'checkpoint-best-acc/model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir))
model.to(args.device)
# load the labeled train dataset, indexes of labeled data
path_la = os.path.join(args.labels_file,'indexes_la.txt')
indexes_la = readindex(path_la)
train_dataset = TextDataset(tokenizer, args,args.train_data_file,'step1',indexes_la,epoch=-1)
# execute step1 method
indexes_rn = Select(model,train_dataset,args)
# write the RN samples' indexes to the txt
path = os.path.join(args.labels_file,'indexes_rn.txt')
writeindex(path,indexes_rn)
""" Second finetune """
if args.do_train_2:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.local_rank == 0:
torch.distributed.barrier()
# load the labeled train dataset, indexes of labeled samples, indexes of RN samples
path_la = os.path.join(args.labels_file,'indexes_la.txt')
path_rn = os.path.join(args.labels_file,'indexes_rn.txt')
indexes_la = readindex(path_la)
indexes_rn = readindex(path_rn)
train_dataset_again = TextDataset(tokenizer, args,args.train_data_file,'second_finetune',indexes_la,indexes_rn,epoch=-1)
# train the model based on the labeled train dataset
train(args, train_dataset_again, model, tokenizer)
if args.do_train_iterative:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.local_rank == 0:
torch.distributed.barrier()
checkpoint_prefix = 'checkpoint-best-acc/model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir))
model.to(args.device)
# load the labeled train dataset, indexes of labeled samples, indexes of RN samples
path_la = os.path.join(args.labels_file,'indexes_la.txt')
path_rn = os.path.join(args.labels_file,'indexes_rn.txt')
indexes_la = readindex(path_la)
indexes_rn = readindex(path_rn)
indexes_un = []
for i in range(args.P_num+args.N_num):
if i not in indexes_la and i not in indexes_rn:
indexes_un.append(i)
train_dataset_again = TextDataset(tokenizer, args,args.train_data_file,'third_finetune',indexes_la,indexes_rn,epoch = 0)
train_dataset_remain = TextDataset(tokenizer, args,args.train_data_file,'iterative_finetune_remain',indexes_la,indexes_rn,epoch = -1)
for i in range(args.epoch):
prob_la,prob_rn = train_iterative(args, train_dataset_again, model,epoch_now = i)
indexes_la,indexes_rn,indexes_un,indexes_la_add,indexes_rn_add = iterative(args, model, tokenizer,
eval_dataset=train_dataset_remain,indexes_la=indexes_la,indexes_rn=indexes_rn,indexes_un=indexes_un,
prob_la = prob_la, prob_rn = prob_rn)
if len(indexes_un) == 0:
break
file_la = 'indexes_la_' + str(i) + '.txt'
file_rn = 'indexes_rn_' + str(i) + '.txt'
path = os.path.join(args.labels_file,file_la)
writeindex(path,indexes_la)
path = os.path.join(args.labels_file,file_rn)
writeindex(path,indexes_rn)
train_dataset_again = TextDataset(tokenizer, args,args.train_data_file,'iterative_finetune',
indexes_la_add,indexes_rn_add,epoch = i+1,dataset_again=train_dataset_again)
train_dataset_remain = TextDataset(tokenizer, args,args.train_data_file,'iterative_finetune_remain',
indexes_la,indexes_rn,epoch=-1)
# test the iterative finetuned model on the test dataset
logger.info("Fintuned model on the test set:")
evaluate(args,model,tokenizer,type='eval')
evaluate(args,model,tokenizer,type='test')
file_la = 'indexes_la_last.txt'
file_rn = 'indexes_rn_last.txt'
path = os.path.join(args.labels_file,file_la)
writeindex(path,indexes_la)
path = os.path.join(args.labels_file,file_rn)
writeindex(path,indexes_rn)
checkpoint_prefix = 'checkpoint-iterative'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,'module') else model
output_dir = os.path.join(output_dir, '{}'.format('model.bin'))
torch.save(model_to_save.state_dict(), output_dir)
logger.info("Saving model checkpoint to %s", output_dir)
if args.do_train_3:
path_la = os.path.join(args.labels_file,'indexes_la_last.txt')
path_rn = os.path.join(args.labels_file,'indexes_rn_last.txt')
indexes_la = readindex(path_la)
indexes_rn = readindex(path_rn)
train_dataset = TextDataset(tokenizer, args,args.train_data_file,'third_finetune',
indexes_la,indexes_rn,epoch = 0)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.local_rank == 0:
torch.distributed.barrier()
train(args,train_dataset,model,tokenizer)
if args.do_test:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.local_rank == 0:
torch.distributed.barrier()
checkpoint_prefix = 'model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir))
model.to(args.device)
evaluate(args,model,tokenizer,type='test')
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
main()