Skip to content

Latest commit

 

History

History
16 lines (12 loc) · 1.08 KB

README.md

File metadata and controls

16 lines (12 loc) · 1.08 KB

Generative Adversarial Network (GAN)

The project is about two types of GAN :

  • Deep Convolutional Gan (DC-GAN)
  • Self-Attention Gan (SA-GAN)

Project requirements:

  • Implement DC-GAN using Binary Cross Entropy loss
  • Apply Batch Normalization in DC-GAN
  • Self-Attention module implementation for SA-GAN
  • Implement wasserstein loss and apply Spectral Normalization in SA-GAN
  • Apply Frechet Inception Distance (FID) as an evaluation metric for both DC-GAN and SA-GAN
  • Use cifar-10 dataset

                                                                                      Code        Report