-
Notifications
You must be signed in to change notification settings - Fork 2
/
fast_dense_feature_extractor.py
147 lines (122 loc) · 4.65 KB
/
fast_dense_feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
implementation of this paper:
Christian Bailer, Tewodros A Habtegebrial, Kiran
Varanasi, and Didier Stricker. Fast Dense Feature
Extraction with CNNs that have Pooling or Strid-
ing Layers. In British Machine Vision Conference
(BMVC), 2017.
Reference from: https://github.com/erezposner/Fast_Dense_Feature_Extraction
"""
from torch import nn
import torch
import numpy as np
import torch.nn.functional as F
# (N,C,H,W)
class multiPoolPrepare(nn.Module):
def __init__(self, patchY, patchX):
super(multiPoolPrepare, self).__init__()
pady = patchY - 1
padx = patchX - 1
self.pad_top = np.ceil(pady / 2).astype(int)
self.pad_bottom = np.floor(pady / 2).astype(int)
self.pad_left = np.ceil(padx / 2).astype(int)
self.pad_right = np.floor(padx / 2).astype(int)
def forward(self, x):
y = F.pad(x, [self.pad_left, self.pad_right,
self.pad_top, self.pad_bottom], mode='reflect')
# value=0)
return y
class unwrapPrepare(nn.Module):
def __init__(self):
super(unwrapPrepare, self).__init__()
def forward(self, x):
x_ = F.pad(x, [0, -1, 0, -1], value=0)
y = x_.contiguous().view(x_.shape[0], -1)
y = y.transpose(0, 1)
return y.contiguous()
class unwrapPool(nn.Module):
def __init__(self, outChans, curImgW, curImgH, dW, dH):
super(unwrapPool, self).__init__()
self.outChans = int(outChans)
self.curImgW = int(curImgW)
self.curImgH = int(curImgH)
self.dW = int(dW)
self.dH = int(dH)
def forward(self, x):
y = x.view((self.outChans, self.curImgW,
self.curImgH, self.dH, self.dW, -1))
y = y.transpose(2, 3)
return y.contiguous()
class multiMaxPooling(nn.Module):
def __init__(self, kW, kH, dW, dH):
super(multiMaxPooling, self).__init__()
layers = []
self.padd = []
for i in range(0, dH):
for j in range(0, dW):
self.padd.append((-j, -i))
layers.append(nn.MaxPool2d(
kernel_size=(kW, kH), stride=(dW, dH)))
self.max_layers = nn.ModuleList(layers)
self.s = dH
def forward(self, x):
hh = []
ww = []
res = []
for i in range(0, len(self.max_layers)):
pad_left, pad_top = self.padd[i]
_x = F.pad(x, [pad_left, pad_left, pad_top, pad_top], value=0)
_x = self.max_layers[i](_x)
h, w = _x.size()[2], _x.size()[3]
hh.append(h)
ww.append(w)
res.append(_x)
max_h, max_w = np.max(hh), np.max(ww)
for i in range(0, len(self.max_layers)):
_x = res[i]
h, w = _x.size()[2], _x.size()[3]
pad_top = np.floor((max_h - h) / 2).astype(int)
pad_bottom = np.ceil((max_h - h) / 2).astype(int)
pad_left = np.floor((max_w - w) / 2).astype(int)
pad_right = np.ceil((max_w - w) / 2).astype(int)
_x = F.pad(_x, [pad_left, pad_right, pad_top, pad_bottom], value=0)
res[i] = _x
return torch.cat(res, 0)
class multiConv(nn.Module):
def __init__(self, nInputPlane, nOutputPlane, kW, kH, dW, dH):
super(multiConv, self).__init__()
layers = []
self.padd = []
for i in range(0, dH):
for j in range(0, dW):
self.padd.append((-j, -i))
torch.manual_seed(10)
torch.cuda.manual_seed(10)
a = nn.Conv2d(nInputPlane, nOutputPlane, kernel_size=(
kW, kH), stride=(dW, dH), padding=0)
layers.append(a)
self.max_layers = nn.ModuleList(layers)
self.s = dW
def forward(self, x):
hh = []
ww = []
res = []
for i in range(0, len(self.max_layers)):
pad_left, pad_top = self.padd[i]
_x = F.pad(x, [pad_left, pad_left, pad_top, pad_top], value=0)
_x = self.max_layers[i](_x)
h, w = _x.size()[2], _x.size()[3]
hh.append(h)
ww.append(w)
res.append(_x)
max_h, max_w = np.max(hh), np.max(ww)
for i in range(0, len(self.max_layers)):
_x = res[i]
h, w = _x.size()[2], _x.size()[3]
pad_top = np.ceil((max_h - h) / 2).astype(int)
pad_bottom = np.floor((max_h - h) / 2).astype(int)
pad_left = np.ceil((max_w - w) / 2).astype(int)
pad_right = np.floor((max_w - w) / 2).astype(int)
_x = F.pad(_x, [pad_left, pad_right, pad_top, pad_bottom], value=0)
res[i] = _x
return torch.cat(res, 0)