-
Notifications
You must be signed in to change notification settings - Fork 140
/
setup.py
58 lines (53 loc) · 2.11 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from setuptools import setup, find_packages
def calculate_version():
initpy = open('pmlb/_version.py').read().split('\n')
version = list(filter(
lambda x: '__version__' in x, initpy))[0].split('\'')[1]
return version
package_version = calculate_version()
setup(
name='pmlb',
version=package_version,
author='Randal S. Olson, William La Cava, Trang Le, Weixuan Fu',
author_email=('rso@randalolson.com, lacava@upenn.edu, '
'ttle@pennmedicine.upenn.edu, weixuanf@pennmedicine.upenn.edu'),
packages=find_packages(),
package_data={'pmlb': ['*.tsv']},
include_package_data=True,
url='https://github.com/EpistasisLab/pmlb',
license='License :: OSI Approved :: MIT License',
description=('A Python wrapper for the Penn Machine Learning Benchmark '
'data repository.'),
long_description='''
A Python wrapper for the Penn Machine Learning Benchmark data repository.
Contact
=============
If you have any questions or comments about the Penn Machine Learning Benchmark,
please feel free to contact us via e-mail: ttle@pennmedicine.upenn.edu
This project is hosted at https://github.com/EpistasisLab/pmlb
''',
zip_safe=True,
install_requires=['pandas>=1.0.5',
'requests>=2.24.0',
'pyyaml>=5.3.1',
'scikit-learn>=0.19.0'
],
extras_require={
'dev': ['nose', 'numpy', 'scipy', 'tabulate', 'parameterized',
'matplotlib', 'seaborn', 'pandas-profiling'],
},
classifiers=[
'Intended Audience :: Developers',
'Intended Audience :: Information Technology',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Topic :: Utilities'
],
keywords=['data mining', 'benchmark', 'machine learning', 'data analysis', 'data sets', 'data science', 'wrapper'],
)