-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonet.py
263 lines (204 loc) · 10.9 KB
/
monet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import tensorflow as tf
import os
import tensorflow_addons as tfa
import matplotlib.pyplot as plt
SIZE = 256
IMAGE_SIZE = [SIZE, SIZE]
NUM_EPOCHS = 2
INITIAL_LR = 0.001
BETA_1 = 0.5
def load_data(monet, photo):
monet_ds = decode_image(monet)
photo_ds = decode_image(photo)
return tf.data.Dataset.zip((monet_ds, photo_ds))
def decode_image(filenames):
images = []
for file in filenames:
image = (tf.cast(tf.image.decode_jpeg(tf.io.read_file(file), channels=3), tf.float32) / SIZE / 2.0) - 1.0
images.append(tf.reshape(image, [*IMAGE_SIZE, 3]))
return tf.data.Dataset.from_tensor_slices(images).batch(1, drop_remainder=True)
def decode_a_image(filename):
image = (tf.cast(tf.image.decode_jpeg(tf.io.read_file(filename), channels=3), tf.float32) / SIZE / 2.0) - 1.0
return tf.data.Dataset.from_tensors(tf.reshape(image, [*IMAGE_SIZE, 3])).batch(1, drop_remainder=True)
def create_generator():
first_stack = tf.keras.layers.Input(shape=[*IMAGE_SIZE, 3])
down_stack = [
downsample(64, 4, apply_instancenorm=False),
downsample(128, 4),
downsample(256, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
downsample(512, 4),
]
up_stack = [
upsample(512, 4, apply_dropout=True),
upsample(512, 4, apply_dropout=True),
upsample(512, 4, apply_dropout=True),
upsample(512, 4),
upsample(256, 4),
upsample(128, 4),
upsample(64, 4),
]
last_stack = tf.keras.layers.Conv2DTranspose(3, 4, strides=2, padding="same",
kernel_initializer=tf.random_normal_initializer(0., 0.02),
activation=tf.keras.activations.tanh)
x = first_stack
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last_stack(x)
return tf.keras.Model(inputs=first_stack, outputs=x)
def create_discriminator():
initializer = tf.random_normal_initializer(0., 0.02)
gamma_init = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02)
first_stack = tf.keras.layers.Input(shape=[*IMAGE_SIZE, 3], name="input_image")
x = first_stack
down1 = downsample(64, 4, False)(x)
down2 = downsample(128, 4)(down1)
down3 = downsample(256, 4)(down2)
pad1 = tf.keras.layers.ZeroPadding2D()(down3)
conv = tf.keras.layers.Conv2D(512, 4, strides=1, kernel_initializer=initializer, use_bias=False)(pad1)
norm = tfa.layers.InstanceNormalization(gamma_initializer=gamma_init)(conv)
leaky = tf.keras.layers.LeakyReLU()(norm)
pad2 = tf.keras.layers.ZeroPadding2D()(leaky)
last_stack = tf.keras.layers.Conv2D(1, 4, strides=1, kernel_initializer=initializer)(pad2)
return tf.keras.Model(inputs=first_stack, outputs=last_stack)
def downsample(filters, size, apply_instancenorm=True, strides=2):
result = tf.keras.Sequential()
result.add(tf.keras.layers.Conv2D(filters, size, strides=strides, padding="same",
kernel_initializer=tf.random_normal_initializer(0., 0.02)))
if apply_instancenorm:
result.add(tfa.layers.InstanceNormalization(gamma_initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02)))
result.add(tf.keras.layers.LeakyReLU())
return result
def upsample(filters, size, apply_dropout=False, strides=2):
result = tf.keras.Sequential()
result.add(tf.keras.layers.Conv2DTranspose(filters, size, strides=strides, padding="same",
kernel_initializer=tf.random_normal_initializer(0., 0.02), use_bias=False))
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
with tf.distribute.get_strategy().scope():
def discriminator_loss(real, fake):
real_loss = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)(tf.ones_like(real), real)
fake_loss = tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)(tf.zeros_like(fake), fake)
return (real_loss + fake_loss) * 0.5
def generator_loss(fake):
return tf.keras.losses.BinaryCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.NONE)(tf.ones_like(fake), fake)
with tf.distribute.get_strategy().scope():
def cycle_loss(real, cycled, LAMBDA):
loss1 = tf.reduce_mean(tf.abs(real - cycled))
return LAMBDA * loss1
with tf.distribute.get_strategy().scope():
def identity_loss(real, same, LAMBDA):
loss = tf.reduce_mean(tf.abs(real - same))
return LAMBDA * 0.5 * loss
with tf.distribute.get_strategy().scope():
def train_model(monet, photo):
if os.path.isfile('./monet_model'):
model = tf.keras.models.load_model('./monet_model.')
else:
m_gen_optimizer = tf.keras.optimizers.Adam(INITIAL_LR, beta_1=BETA_1)
p_gen_optimizer = tf.keras.optimizers.Adam(INITIAL_LR, beta_1=BETA_1)
m_disc_optimizer = tf.keras.optimizers.Adam(INITIAL_LR, beta_1=BETA_1)
p_disc_optimizer = tf.keras.optimizers.Adam(INITIAL_LR, beta_1=BETA_1)
model = CycleGan(monet_generator, photo_generator, monet_discriminator, photo_discriminator)
model.compile(m_gen_optimizer=m_gen_optimizer, p_gen_optimizer=p_gen_optimizer, m_disc_optimizer=m_disc_optimizer, p_disc_optimizer=p_disc_optimizer,
gen_loss_fn=generator_loss, disc_loss_fn=discriminator_loss, cycle_loss_fn=cycle_loss, identity_loss_fn=identity_loss)
history = model.fit(load_data(monet, photo), epochs=NUM_EPOCHS, batch_size=1).history
return model, history
def main():
monet_path = '.\\data\\art_creator\\monet_jpg'
photo_path = '.\\data\\art_creator\\photo_jpg'
monet = [os.path.join(monet_path, file) for file in os.listdir(monet_path)]
photo = [os.path.join(photo_path, file) for file in os.listdir(photo_path)]
model, history = train_model(monet, photo)
monet_generator.save('./monet_generator.h5')
photo_generator.save('./photo_generator.h5')
monet_discriminator.save('./monet_discriminator.h5')
photo_discriminator.save('./photo_discriminator.h5')
display_generated_samples(decode_a_image(photo[0]), monet_generator)
def display_generated_samples(image, model):
generated_sample = model.predict(image)
plt.subplot(121)
plt.title("input image")
plt.imshow(tf.data.experimental.get_single_element(image)[0] * 0.5 + 0.5)
plt.axis('off')
plt.subplot(122)
plt.title("generated image")
plt.imshow(generated_sample[0] * 0.5 + 0.5)
plt.axis('off')
plt.show()
with tf.distribute.get_strategy().scope():
if os.path.isfile('./monet_generator.h5'):
monet_generator = tf.keras.models.load_model('./monet_generator.h5')
photo_generator = tf.keras.models.load_model('./photo_generator.h5')
monet_discriminator = tf.keras.models.load_model('./monet_discriminator.h5')
photo_discriminator = tf.keras.models.load_model('./photo_discriminator.h5')
else:
monet_generator = create_generator()
photo_generator = create_generator()
monet_discriminator = create_discriminator()
photo_discriminator = create_discriminator()
class CycleGan(tf.keras.Model):
def __init__(self, monet_generator, photo_generator, monet_discriminator, photo_discriminator, lambda_cycle=10):
super(CycleGan, self).__init__()
self.m_gen = monet_generator
self.p_gen = photo_generator
self.m_disc = monet_discriminator
self.p_disc = photo_discriminator
self.lambda_cycle = lambda_cycle
def compile(self, m_gen_optimizer, p_gen_optimizer, m_disc_optimizer, p_disc_optimizer, gen_loss_fn, disc_loss_fn, cycle_loss_fn, identity_loss_fn):
super(CycleGan, self).compile()
self.m_gen_optimizer = m_gen_optimizer
self.p_gen_optimizer = p_gen_optimizer
self.m_disc_optimizer = m_disc_optimizer
self.p_disc_optimizer = p_disc_optimizer
self.gen_loss_fn = gen_loss_fn
self.disc_loss_fn = disc_loss_fn
self.cycle_loss_fn = cycle_loss_fn
self.identity_loss_fn = identity_loss_fn
def train_step(self, batch_data):
real_monet, real_photo = batch_data
with tf.GradientTape(persistent=True) as tape:
fake_monet = self.m_gen(real_photo, training=True)
cycled_photo = self.p_gen(fake_monet, training=True)
fake_photo = self.p_gen(real_monet, training=True)
cycled_monet = self.m_gen(fake_photo, training=True)
same_monet = self.m_gen(real_monet, training=True)
same_photo = self.p_gen(real_photo, training=True)
disc_real_monet = self.m_disc(real_monet, training=True)
disc_real_photo = self.p_disc(real_photo, training=True)
disc_fake_monet = self.m_disc(fake_monet, training=True)
disc_fake_photo = self.p_disc(fake_photo, training=True)
monet_gen_loss = self.gen_loss_fn(disc_fake_monet)
photo_gen_loss = self.gen_loss_fn(disc_fake_photo)
total_cycle_loss = self.cycle_loss_fn(real_monet, cycled_monet, self.lambda_cycle) + self.cycle_loss_fn(real_photo, cycled_photo, self.lambda_cycle)
total_monet_gen_loss = monet_gen_loss + total_cycle_loss + self.identity_loss_fn(real_monet, same_monet, self.lambda_cycle)
total_photo_gen_loss = photo_gen_loss + total_cycle_loss + self.identity_loss_fn(real_photo, same_photo, self.lambda_cycle)
monet_disc_loss = self.disc_loss_fn(disc_real_monet, disc_fake_monet)
photo_disc_loss = self.disc_loss_fn(disc_real_photo, disc_fake_photo)
monet_gen_grads = tape.gradient(total_monet_gen_loss, self.m_gen.trainable_variables)
photo_gen_grads = tape.gradient(total_photo_gen_loss, self.p_gen.trainable_variables)
monet_disc_grads = tape.gradient(monet_disc_loss, self.m_disc.trainable_variables)
photo_disc_grads = tape.gradient(photo_disc_loss, self.p_disc.trainable_variables)
self.m_gen_optimizer.apply_gradients(zip(monet_gen_grads, self.m_gen.trainable_variables))
self.p_gen_optimizer.apply_gradients(zip(photo_gen_grads, self.p_gen.trainable_variables))
self.m_disc_optimizer.apply_gradients(zip(monet_disc_grads, self.m_disc.trainable_variables))
self.p_disc_optimizer.apply_gradients(zip(photo_disc_grads, self.p_disc.trainable_variables))
return {
"monet_gen_loss": total_monet_gen_loss,
"photo_gen_loss": total_photo_gen_loss,
"monet_disc_loss": monet_disc_loss,
"photo_disc_loss": photo_disc_loss
}
if __name__ == '__main__':
main()