This project implements a genetic algorithm for evolving robot behaviors.
This script runs the main evolutionary simulation.
- Creates an initial population of robots
- Evaluates fitness of individuals
- Implements generational evolution
- Prints population statistics
- Initialize a parent population
- Evaluate initial fitness
- Run evolution for a set number of generations
- Create child populations
- Evaluate and replace parent population
- Print final results
Manages a group of individual robots.
Methods:
Initialize()
: Create initial set of individualsEvaluate(show)
: Assess fitness of individualsPrint()
: Display population informationFill_From(parents)
: Generate new population from parents
Represents a single robot (implementation not shown in provided code).
Represents the physical robot model (implementation not shown in provided code).
pyrosim
: Likely used for robot simulationmatplotlib.pyplot
: For potential data visualizationrandom
: For introducing variabilitynumpy
: For numerical operationscopy
: For object copyingpickle
: For object serialization (not used in shown code)