-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy path2-6-ctc_speech_both.py
272 lines (205 loc) · 9.95 KB
/
2-6-ctc_speech_both.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# coding: utf-8
# 使用清华开源的中文识别语料进行训练
from os.path import join
import numpy as np
import os
import sys
import itertools
import shutil
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score
from sklearn.externals import joblib
import keras
import keras.backend as K
from keras.callbacks import CSVLogger, ReduceLROnPlateau, TensorBoard
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers.convolutional import Conv1D
from keras.layers import Input, Activation, Lambda
from keras.models import Model
from keras.layers.recurrent import GRU
from keras.optimizers import SGD, Adam
from keras.utils import multi_gpu_model
from keras.layers import BatchNormalization, Multiply, Add
from utils import get_wav_files, get_corpus, remove_blank_wav, get_batch
from utils import get_thchs_wav_paths,get_thchs_corpus,get_thchs_trans_text
from utils import get_trans_text,get_name_to_text, get_token,get_name_to_seq
np.random.seed(2018)
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
y_pred = y_pred[:, 2:, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def get_model(img_w=32, img_h=20, output_size=None, max_pred_len=4,model_path='best.h5'):
input_tensor=Input(shape=(img_w,img_h),name='the_input')
x=Conv1D(kernel_size=1,filters=192,padding="same")(input_tensor)
x=BatchNormalization(axis=-1)(x)
x=Activation("tanh")(x)
def res_block(x,size,rate,dim=192):
x_tanh=Conv1D(kernel_size=size,filters=dim,dilation_rate=rate,padding="same")(x)
x_tanh=BatchNormalization(axis=-1)(x_tanh)
x_tanh=Activation("tanh")(x_tanh)
x_sigmoid=Conv1D(kernel_size=size,filters=dim,dilation_rate=rate,padding="same")(x)
x_sigmoid=BatchNormalization(axis=-1)(x_sigmoid)
x_sigmoid=Activation("sigmoid")(x_sigmoid)
out=Multiply()([x_tanh,x_sigmoid])
out=Conv1D(kernel_size=1,filters=dim,padding="same")(out)
out=BatchNormalization(axis=-1)(out)
out=Activation("tanh")(out)
x=Add()([x,out])
return x,out
skip=[]
for i in np.arange(0,3):
for r in [1,2,4,8,16]:
x,s=res_block(x,size=7,rate=r)
skip.append(s)
skip_tensor=Add()([s for s in skip])
logit=Conv1D(kernel_size=1,filters=192,padding="same")(skip_tensor)
logit=BatchNormalization(axis=-1)(logit)
logit=Activation("tanh")(logit)
y_pred=Conv1D(kernel_size=1,filters=output_size,padding="same",activation="softmax")(logit)
# Model(inputs=input_tensor, outputs=y_pred).summary()
labels = Input(name='the_labels', shape=[max_pred_len], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
# clipnorm seems to speeds up convergence
opt = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
# opt = Adam(lr=0.001)
model = Model(inputs=[input_tensor, labels, input_length, label_length], outputs=loss_out)
# the loss calc occurs elsewhere, so use a dummy lambda func for the loss
# model = multi_gpu_model(model, gpus=2)
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=opt)
test_func = K.function([input_tensor,K.learning_phase()], [y_pred])
if os.path.exists(model_path) :
model.load_weights(model_path)
print('load weights from', model_path)
else:
print(model_path,'do not exists!')
return model, test_func
def decode_batch(test_func, batch):
out = test_func([batch])[0]
ret = []
for j in range(out.shape[0]):
out_best = list(np.argmax(out[j, 2:], 1))
out_best = [k for k, g in itertools.groupby(out_best)]
# outstr = labels_to_text(out_best)
ret.append(out_best)
return ret
def get_mms(path, mms_batch):
mms_path = join(path,'mms.pkl')
if os.path.exists(mms_path):
mms = joblib.load(mms_path)
print('loading mms')
else:
mms = MinMaxScaler()
x, _ = next(mms_batch)
mms.fit(x['the_input'].reshape((-1,1)))
joblib.dump(mms, mms_path)
print('training mms')
return mms
def filter_blank_text(line, tok=None):
if len(line) != len(tok.texts_to_sequences([line])[0]):
return False
return True
class MetricCallback(keras.callbacks.Callback):
def __init__(self, test_func, gen_batch, idx2w, info='this is test'):
self.test_func = test_func
self.gen_batch = gen_batch
self.info = info
self.idx2w=idx2w
def on_epoch_end(self, epoch, logs={}):
print(self.info)
ctc_x, ctc_y = next(self.gen_batch)
y_pred = decode_batch(self.test_func, ctc_x['the_input'])
y_true = ctc_x['the_labels']
acc_list = []
for idx,(row_pred, row_true) in enumerate(zip(y_pred,y_true)):
acc = len(set(row_true[row_true > 0]) & set(row_pred)) / len(set(row_true[row_true > 0]))
acc_list.append(acc)
if idx % 10 == 0:
print('the pred=',''.join([self.idx2w[num] for num in row_pred]))
print('the true=',''.join([self.idx2w[num] for num in row_true]))
print('the acc = ',np.mean(acc_list))
return y_pred, y_true
if __name__ == '__main__':
path1 = 'data_aishell'
path2 = 'data_thchs30'
path3 = 'data_both'
if not os.path.exists(path3):
os.mkdir(path3)
K.set_learning_phase(1) #set learning phase
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # 选择使用的GPU
wav_files = get_thchs_wav_paths(path2)
wav_len = len(wav_files)
train2_wavs = wav_files[:int(0.8*wav_len)]
val2_wavs = wav_files[int(0.8*wav_len):int(0.9*wav_len)]
test2_wavs = wav_files[int(0.9*wav_len):]
train1_wavs, val1_wavs, test1_wavs = get_wav_files(path1)
# name_to_seq, tok = get_thchs_corpus(path2,wav_files, maxlen=48)
trans2_lines = get_thchs_trans_text(path2, wav_files)
trans1_lines = get_trans_text(path1)
name_to_text1 = get_name_to_text(trans1_lines)
name_to_text2 = get_name_to_text(trans2_lines)
tok = get_token(name_to_text2, path3)
name_to_text1 = dict(filter(lambda x: filter_blank_text(x[1], tok=tok), [(k, v) for k,v in name_to_text1.items()]))
name_to_text1.update(name_to_text2)
name_to_seq = get_name_to_seq(name_to_text1, tok, maxlen=48)
print(len(name_to_seq), len(name_to_text1), len(name_to_text2))
train1_wavs = remove_blank_wav(train1_wavs, name_to_seq)
val1_wavs = remove_blank_wav(val1_wavs, name_to_seq)
test1_wavs = remove_blank_wav(test1_wavs, name_to_seq)
train2_wavs = remove_blank_wav(train2_wavs, name_to_seq)
val2_wavs = remove_blank_wav(val2_wavs, name_to_seq)
test2_wavs = remove_blank_wav(test2_wavs, name_to_seq)
model_path = join(path3,"best_weights_778x26.h5")
log_path = join(path3,'logs')
model, test_func = get_model(img_w=778, img_h=26,
output_size=len(tok.word_index) + 2, max_pred_len=48,
model_path=model_path)
mms_batch = get_batch(train2_wavs + train1_wavs[:], name_to_seq,
batch_size=1000, max_pred_len=48, input_length=778,
mms=None)
mms = get_mms(path3, mms_batch)
train_batch = get_batch(train2_wavs + train1_wavs[:], name_to_seq,
batch_size=64, max_pred_len=48, input_length=778,
mms=mms)
val_batch = get_batch(val2_wavs + val1_wavs[:], name_to_seq,
batch_size=32, max_pred_len=48, input_length=778,
mms=mms)
train_callback = get_batch(train2_wavs + train1_wavs[:], name_to_seq,
batch_size=16, max_pred_len=48, input_length=778,
mms=mms)
val_callback = get_batch(val2_wavs + val1_wavs[:], name_to_seq,
batch_size=16, max_pred_len=48, input_length=778,
mms=mms)
ctc_x, ctc_y = next(train_batch)
for name, value in ctc_x.items():
print(name, value.shape)
for name, value in ctc_y.items():
print(name, value.shape)
checkpointer = ModelCheckpoint(model_path, verbose=1,
save_best_only=False,
save_weights_only=True, period=1)
csv_to_log = CSVLogger(join(path3, "logger_0628.csv"),append=True)
lr_change = ReduceLROnPlateau(monitor="loss", factor=0.7,
patience=0, min_lr=0.000,
min_delta=0.05,verbose=1)
tfboard = TensorBoard(log_dir=log_path)
if os.path.exists(log_path):
shutil.rmtree(log_path)
idx2w = dict((i,w) for w,i in tok.word_index.items())
max_key = max(idx2w.keys())
idx2w[0] = ''
idx2w[max_key + 1] = ''
mcb_val = MetricCallback(test_func,val_callback, idx2w, 'val set')
mcb_train = MetricCallback(test_func,train_callback, idx2w, '\n'+'train_set')
callback_list = [checkpointer, tfboard, lr_change, csv_to_log, mcb_train, mcb_val]
history = model.fit_generator(train_batch,
validation_data=(val_batch),
validation_steps=5,
steps_per_epoch=1000, epochs=1000,
callbacks=callback_list,
workers=2, max_queue_size=256)