Skip to content

A PyTorch implementation of "MMNet: A medical image-to-image translation network based on manifold value correction and manifold matching"

License

Notifications You must be signed in to change notification settings

ElegantLee/MMNet

Repository files navigation

MMNet

A PyTorch implementation of "MMNet: A medical image-to-image translation network based on manifold value correction and manifold matching".

MMNet


Environment

  1. Linux(ubuntu)
  2. python=3.7.3
  3. torch=1.7.1+cu92
  4. tqdm=4.32.1
  5. opencv-python=4.5.3.56
  6. pyyaml=5.1.1
  7. visdom=0.1.8.9

Demo

  1. The pre-trained models are in "checkpoints/MMNet";

  2. Download patial test samples from GoogleDrive, then put them into corresponding dir ("datasets/BraTs2015/val or datasets/OASIS3/val");

  3. Modify the MMNet.yaml in "Yaml/MMNet.yaml";

    Config for test.

    run_name: 'MMNet/BraTs2015/'
    dataset: BraTs2015
    val_dataroot: 'datasets/BraTs2015/val'
    input_nc: 1
    run_name: 'MMNet/OASIS3/'
    dataset: OASIS3
    val_dataroot: 'datasets/OASIS3/val'
    input_nc: 3
  4. python test.py

Acknowledgments

Code borrows from Reg-GAN and pytorch-manifold-matching. The distribution generator and distribution corrector is modified from Reg-GAN and VoxelMorph.

About

A PyTorch implementation of "MMNet: A medical image-to-image translation network based on manifold value correction and manifold matching"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages