A PyTorch implementation of "MMNet: A medical image-to-image translation network based on manifold value correction and manifold matching".
- Linux(ubuntu)
- python=3.7.3
- torch=1.7.1+cu92
- tqdm=4.32.1
- opencv-python=4.5.3.56
- pyyaml=5.1.1
- visdom=0.1.8.9
-
The pre-trained models are in "checkpoints/MMNet";
-
Download patial test samples from GoogleDrive, then put them into corresponding dir ("datasets/BraTs2015/val or datasets/OASIS3/val");
-
Modify the MMNet.yaml in "Yaml/MMNet.yaml";
Config for test.
run_name: 'MMNet/BraTs2015/' dataset: BraTs2015 val_dataroot: 'datasets/BraTs2015/val' input_nc: 1
run_name: 'MMNet/OASIS3/' dataset: OASIS3 val_dataroot: 'datasets/OASIS3/val' input_nc: 3
-
python test.py
Code borrows from Reg-GAN and pytorch-manifold-matching. The distribution generator and distribution corrector is modified from Reg-GAN and VoxelMorph.