-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquerytexts.py
122 lines (105 loc) · 3.79 KB
/
querytexts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import buildindex
import re
#NEED TO TEST MORE.
#input = [file1, file2, ...]
#res = {word: {filename: {pos1, pos2}, ...}, ...}
class Query:
def __init__(self, filenames):
self.filenames = filenames
self.index = buildindex.BuildIndex(self.filenames)
self.invertedIndex = self.index.totalIndex
self.regularIndex = self.index.regdex
def one_word_query(self, word):
pattern = re.compile('[\W_]+')
word = pattern.sub(' ',word)
if word in self.invertedIndex.keys():
return self.rankResults([filename for filename in self.invertedIndex[word].keys()], word)
else:
return []
def free_text_query(self, string):
pattern = re.compile('[\W_]+')
string = pattern.sub(' ',string)
result = []
for word in string.split():
result += self.one_word_query(word)
return self.rankResults(list(set(result)), string)
#inputs = 'query string', {word: {filename: [pos1, pos2, ...], ...}, ...}
#inter = {filename: [pos1, pos2]}
def phrase_query(self, string):
pattern = re.compile('[\W_]+')
string = pattern.sub(' ',string)
listOfLists, result = [],[]
for word in string.split():
listOfLists.append(self.one_word_query(word))
setted = set(listOfLists[0]).intersection(*listOfLists)
for filename in setted:
temp = []
for word in string.split():
temp.append(self.invertedIndex[word][filename][:])
for i in range(len(temp)):
for ind in range(len(temp[i])):
temp[i][ind] -= i
if set(temp[0]).intersection(*temp):
result.append(filename)
return self.rankResults(result, string)
def make_vectors(self, documents):
vecs = {}
for doc in documents:
docVec = [0]*len(self.index.getUniques())
for ind, term in enumerate(self.index.getUniques()):
docVec[ind] = self.index.generateScore(term, doc)
vecs[doc] = docVec
return vecs
def query_vec(self, query):
pattern = re.compile('[\W_]+')
query = pattern.sub(' ',query)
queryls = query.split()
queryVec = [0]*len(queryls)
index = 0
for ind, word in enumerate(queryls):
queryVec[index] = self.queryFreq(word, query)
index += 1
queryidf = [self.index.idf[word] for word in self.index.getUniques()]
magnitude = pow(sum(map(lambda x: x**2, queryVec)),.5)
freq = self.termfreq(self.index.getUniques(), query)
#print('THIS IS THE FREQ')
tf = [x/magnitude for x in freq]
final = [tf[i]*queryidf[i] for i in range(len(self.index.getUniques()))]
#print(len([x for x in queryidf if x != 0]) - len(queryidf))
return final
def queryFreq(self, term, query):
count = 0
#print(query)
#print(query.split())
for word in query.split():
if word == term:
count += 1
return count
def termfreq(self, terms, query):
temp = [0]*len(terms)
for i,term in enumerate(terms):
temp[i] = self.queryFreq(term, query)
#print(self.queryFreq(term, query))
return temp
def dotProduct(self, doc1, doc2):
if len(doc1) != len(doc2):
return 0
return sum([x*y for x,y in zip(doc1, doc2)])
def rankResults(self, resultDocs, query):
vectors = self.make_vectors(resultDocs)
#print(vectors)
queryVec = self.query_vec(query)
#print(queryVec)
results = [[self.dotProduct(vectors[result], queryVec), result] for result in resultDocs]
#print(results)
results.sort(key=lambda x: x[0])
#print(results)
results = [x[1] for x in results]
return results
"""Do this:
Calculate a tf-idf score for every unique term in the collection, for each document. As in, find all unique terms, and for each document, got through
each unique term and calculate a tf-idf score for it in the doc. You can do this already with the generateScore function. Doc becomes array of scores.
Calculate a tf-idf score for every unique term in the collection for the query.
Find the cosine distance between each document and the query, and put the results in descending order.
"""
q = Query(['pg135.txt', 'pg76.txt', 'pg5200.txt'])