This repository has been archived by the owner on Nov 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path.Rhistory
512 lines (512 loc) · 28.2 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
rm(list = ls())
# load libraries ####
library(png)
library(gridExtra)
library(ggplot2)
library(grid)
library(tiff)
# prepare site list and order by average temperature ####
sites <- list.dirs("results/log_core_measurement", full.names = F, recursive = F)
sites <- sites[!sites%in%"Hansley"]
# give site abbrevationtion in paper
sites_abb <- list(BCI = "BCNM",
HKK = "HKK",
NewMexico = "LT",
CedarBreaks = "CB",
SCBI = "SCBI",
LillyDickey = "LDW",
HarvardForest = "HF",
# Nebraska = "NE",
Niobara = "NIO",
Hansley = "NE",
Zofin = "ZOF",
ScottyCreek = "SC")
# order sites by average temperature
MAT_order <- read.csv("doc/manuscript/tables_figures/sites.csv")
sites <- names(sites_abb[match(MAT_order[,1], sites_abb)])
# load all legends ####
load("results/all_legends.Rdata")
# sites with dbh
sites_with_dbh <- sites #[-grep("CedarBreaks", sites)]
# standardize variable names ####
v_names <- list(tmn = "expression(T[min]~",
tmx = "expression(T[max]~",
tmp = "expression(T[mean]~",
pet = "expression(PET~",
pre = "expression(PPT~",
wet = "expression(PDF~",
dbh = "expression(DBH~")
# DBH response at each sites and for each response ####
what_to_show <- c("log_core_measurement_dbh" = expression(RW~(mm)), "log_BAI_dbh" = expression(BAI~(cm^2)), "log_agb_inc_dbh" = expression(Delta*AGB~(kg)))
n_sites <- length(sites_with_dbh)
all_plots <- list()
for(site in sites_with_dbh){
for(what in names(what_to_show)) {
temp_env <- new.env()
load(paste0('results/', what, "/", site, "/env.RData"), envir = temp_env)
p <- get("p_dbh", envir = temp_env)
# remove title and xlab of p
p$labels$title <- NULL
p$labels$x <- NULL
# change ylim to scale across sites
p <- p + ylim(range(get("ylim_p", temp_env)) * ifelse(what == "log_agb_inc_dbh", 1000, 1)) # ylim(ylim_p[[what]][["dbh"]])
# if p is AGB, convert to kg
if(what == "log_agb_inc_dbh") p$data[c("expfit", "lwr", "upr")] <- p$data[c("expfit", "lwr", "upr")]*1000
# save into all_plots
all_plots[[paste0(site, what)]] <- p
# get the species colors
species_colors <- get("species_colors", temp_env)
} # for what in ...
# add a plot for the legend
# all_plots[[paste0(site, "leg")]] <- all_legends[[site]]#g_legend()
} # for site in sites
all_legends_left <- all_legends[sites_with_dbh[seq(1, length(sites_with_dbh), by = 2)]]
all_legends_right <- all_legends[sites_with_dbh[seq(2, length(sites_with_dbh), by = 2)]]
leg_lengths_left <- unlist(lapply(all_legends_left, function(x) nrow(x$grobs[[1]])))
leg_lengths_right <- unlist(lapply(all_legends_right, function(x) nrow(x$grobs[[1]])))
layout_matrix_left <- matrix(rep( 1:length(leg_lengths_left), leg_lengths_left), ncol = 1)
layout_matrix_right <- matrix(rep( 1:length(leg_lengths_right), leg_lengths_right), ncol = 1)
png("doc/manuscript/tables_figures/DBH_responses.png", width = 10, height = 10, res = 300, units = "in")
grid.arrange(arrangeGrob(grobs = all_plots, ncol = 3, vp= grid::viewport(width=0.95, height=0.95)),
arrangeGrob( grobs =all_legends_left, layout_matrix = layout_matrix_left, size="first"),
arrangeGrob( grobs =all_legends_right, layout_matrix = layout_matrix_right), ncol = 3, widths = c(4,1,1))
grid::grid.text(sites_abb[sites_with_dbh], x = unit(0.025, "npc"), y = unit(rev(cumsum(c(.95/n_sites/2, rep(.95/n_sites, n_sites-1)))) + .035, "npc"), rot = 90)
grid::grid.text(what_to_show, x = unit(cumsum(c(.05 +.9/4.5/2, rep(.9/4.5, 2))), "npc"), y = unit(.99, "npc"))
grid::grid.text("DBH (cm)", x = unit(.35, "npc"), y = unit(0.015, "npc"))
dev.off()
# Year response at each sites and for each response ####
what_to_show <- c("log_core_measurement_dbh" = expression(RW~(mm)), "log_BAI_dbh" = expression(BAI~(cm^2)), "log_agb_inc_dbh" = expression(Delta*AGB~(kg)))
n_sites <- length(sites_with_dbh)
all_plots <- list()
for(site in sites_with_dbh){
for(what in names(what_to_show)) {
temp_env <- new.env()
load(paste0('results/with_Year/', what, "/", site, "/env.RData"), envir = temp_env)
p <- get("p_Year", envir = temp_env)
# remove title and xlab of p
p$labels$title <- NULL
p$labels$x <- NULL
p$labels$xintercept <- NULL
# change ylim to scale across sites
p <- p + ylim(range(get("ylim_p", temp_env)) * ifelse(what == "log_agb_inc_dbh", 1000, 1)) # ylim(ylim_p[[what]][["dbh"]])
# if p is AGB, convert to kg
if(what == "log_agb_inc_dbh") p$data[c("expfit", "lwr", "upr")] <- p$data[c("expfit", "lwr", "upr")]*1000
# save into all_plots
all_plots[[paste0(site, what)]] <- p
# get the species colors
species_colors <- get("species_colors", temp_env)
} # for what in ...
# add a plot for the legend
# all_plots[[paste0(site, "leg")]] <- all_legends[[site]]#g_legend()
} # for site in sites
png("doc/manuscript/tables_figures/Year_responses.png", width = 8, height = 10, res = 300, units = "in")
grid.arrange(arrangeGrob(grobs = all_plots, ncol = 3, vp= grid::viewport(width=0.95, height=0.95)))
grid::grid.text(sites_abb[sites_with_dbh], x = unit(0.025, "npc"), y = unit(rev(cumsum(c(.95/n_sites/2, rep(.95/n_sites, n_sites-1)))) + .035, "npc"), rot = 90)
grid::grid.text(what_to_show, x = unit(cumsum(c(.05 +.9/2.9/2, rep(.9/2.9, 2))), "npc"), y = unit(.99, "npc"))
grid::grid.text("Year", x = unit(.5, "npc"), y = unit(0.015, "npc"))
dev.off()
# Year response only for log_BAI_dbh response ####
what_to_show <- c("log_BAI_dbh" = expression(BAI~(cm^2)))
n_sites <- length(sites_with_dbh)
all_plots <- list()
xlim_p <- NULL
for(site in sites_with_dbh){
for(what in names(what_to_show)) {
temp_env <- new.env()
load(paste0('results/with_Year/', what, "/", site, "/env.RData"), envir = temp_env)
p <- get("p_Year", envir = temp_env)
# remove title and xlab of p
p$labels$title <- NULL
p$labels$x <- NULL
p$labels$xintercept <- NULL
# change ylim to scale across sites
p <- p + ylim(range(get("ylim_p", temp_env)) * ifelse(what == "log_agb_inc_dbh", 1000, 1)) # ylim(ylim_p[[what]][["dbh"]])
# if p is AGB, convert to kg
if(what == "log_agb_inc_dbh") p$data[c("expfit", "lwr", "upr")] <- p$data[c("expfit", "lwr", "upr")]*1000
# save into all_plots
all_plots[[paste0(site, what)]] <- p
# save x-range
xlim_p[[paste0(site, what)]] <- range(p$data$Year)
# get the species colors
species_colors <- get("species_colors", temp_env)
} # for what in ...
# add a plot for the legend
# all_plots[[paste0(site, "leg")]] <- g_legend()
} # for site in sites
png("doc/manuscript/tables_figures/Year_responses_BAI_only.png", width = 10, height = 10, res = 300, units = "in")
grid.arrange(do.call(arrangeGrob, c(lapply(all_plots, function(x) if(!is.null(x$data)) x + xlim(range(xlim_p)) else x), ncol = 2)), vp= grid::viewport(width=0.98, height=0.98),
arrangeGrob( grobs =all_legends_left, layout_matrix = layout_matrix_left, size="first"),
arrangeGrob( grobs =all_legends_right, layout_matrix = layout_matrix_right), ncol = 3, widths = c(4,1.2,1))
grid::grid.text(sites_abb[sites_with_dbh], x = unit(c(0.2,0.5), "npc"), y = unit(rep(rev(cumsum(c(.95/(n_sites/2), rep(.95/(n_sites/2), (n_sites/2)-1)))),each = 2), "npc"))
grid::grid.text(what_to_show, x = unit(0.025, "npc"), y = unit(rev(cumsum(c(.95/(n_sites/2), rep(.95/(n_sites/2), (n_sites/2)-1))))-0.05, "npc"), rot = 90)
grid::grid.text("Year", x = unit(.35, "npc"), y = unit(0.015, "npc"))
dev.off()
# Pre and Temp groups ####
what = c("log_core_measurement" = expression(RW~(mm)))
n_sites <- length(sites)
all_plots <- list()
for(site in sites){
temp_env <- new.env()
load(paste0('results/', names(what), "/", site, "/env.RData"), envir = temp_env)
existing_plots <- ls(temp_env)[grepl("^p_[^in]", ls(temp_env))]
# get variable in order or Precipitation, Temperature and cloud groups (but complicated because, pet is in both temp and dtr),....
clim_var_group <- get("clim_var_group" , temp_env)
existing_plots <- existing_plots[match(c(1,2), sapply(gsub("p_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))]
# sandardize variable names
lapply(existing_plots[!is.na(existing_plots)], function(x) {
p <- get(x, temp_env)
ylim_p <- get("ylim_p", temp_env)
ylim_p <- ylim_p[!names(ylim_p) %in% "dbh"]
p <- p + ylim(range(ylim_p))
p$labels$x <- eval(parse(text = gsub(" | ", "~", gsub("-1", "\\^-1", paste0(gsub(substr(p$labels$x, 1, 4), v_names[substr(p$labels$x, 1, 3)], p$labels$x), ")")))))
p$theme$plot.background <-element_blank()
assign(x, p, temp_env)
})
# get the species colors
species_colors <- get("species_colors", temp_env)
# add legend
# assign("leg", g_legend(), envir = temp_env)
# existing_plots <- c(existing_plots, "leg")
all_plots[[paste0(site, what)]] <- grid.arrange(do.call(arrangeGrob, c(lapply(existing_plots, function(x) {if(is.na(x)) grid.text(label = "no significant\nmain effect") else get(x, temp_env)}), ncol = 2)))
} # for(site in sites)
png("doc/manuscript/tables_figures/pre_temp_groups.png", width = 8.2, height = 8.2, res = 300, units = "in")
grid.arrange(grobs = all_plots, vp= grid::viewport(width=0.95, height=0.95), ncol = 2)
grid::grid.text(sites_abb[sites], x = unit(rep(c(0.032, 0.515), 2), "npc"), y = unit(rep(rev(cumsum(c(.95/(n_sites/2), rep(.95/(n_sites/2), n_sites/2-1)))+0.02), each = 2), "npc"))
grid::grid.text(what, x = unit(0.0265, "npc"), y = unit(rev(cumsum(c(.95/(n_sites/2), rep(.95/(n_sites/2), n_sites/2-1)))-0.05), "npc"), rot = 90)
grid::grid.text(c("Precipitation group", "Temperature group"), x = unit(cumsum(c(.05 +.9/3.9/2, rep(.9/3.9, 3))), "npc"), y = unit(.99, "npc"))
dev.off()
# Pre and Temp groups with DBH interaction ####
what_to_show = c("log_core_measurement_dbh" = expression(RW~(mm)),
"log_BAI_dbh" = expression(BAI~(cm^2)),
"log_agb_inc_dbh" = expression(Delta*AGB~(kg)))
n_sites <- length(sites)
for(what in names(what_to_show)) {
all_plots <- list()
for(site in sites){
temp_env <- new.env()
load(paste0('results/', what, "/", site, "/env.RData"), envir = temp_env)
existing_plots <- ls(temp_env)[grepl("^p_int_", ls(temp_env))]
# get variable in order or Precipitation, Temperature and cloud groups (but complicated because, pet is in both temp and dtr),....
clim_var_group <- get("clim_var_group" , temp_env)
existing_plots <- existing_plots[match(c(1,2), sapply(gsub("p_int_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))]
if(any(!is.na(existing_plots))) {
# sandardize variable names
lapply(existing_plots[!is.na(existing_plots)], function(x) {
p <- get(x, temp_env)
ylim_p_int <- get("ylim_p_int", temp_env)
ylim_p_int <- ylim_p_int[!names(ylim_p_int) %in% "dbh"]
p <- p + ylim(range(ylim_p_int))
p$labels$x <- eval(parse(text = gsub(" | ", "~", gsub("-1", "\\^-1", paste0(gsub(substr(p$labels$x, 1, 4), v_names[substr(p$labels$x, 1, 3)], p$labels$x), ")")))))
p$theme$plot.background <- element_blank()
p$theme$legend.position <- "none"
assign(x, p, temp_env)
print(p)
})
}
# get the species colors
# species_colors <- get("species_colors", temp_env)
# add legend
# assign("leg", g_legend(), envir = temp_env)
# existing_plots <- c(existing_plots, "leg")
all_plots[[paste0(site, what)]] <- grid.arrange(do.call(arrangeGrob, c(lapply(existing_plots, function(x) {if(is.na(x)) grid.text(label = "no significant\ninteractions") else get(x, temp_env)}), ncol = 2)))
} # for(site in sites)
png(paste0("doc/manuscript/tables_figures/pre_temp_groups_dbh_interactions_", what, ".png"), width = 8.2, height = 8.2, res = 300, units = "in")
grid.arrange(grobs = all_plots, vp= grid::viewport(width=0.95, height=0.95), ncol = 2)
grid::grid.text(sites_abb[sites], x = unit(rep(c(0.032, 0.515), 2), "npc"), y = unit(rep(rev(cumsum(c(.95/(n_sites/2), rep(.95/(n_sites/2), n_sites/2-1)))+0.02), each = 2), "npc"))
grid::grid.text(what_to_show[what], x = unit(0.0265, "npc"), y = unit(rev(cumsum(c(.95/(n_sites/2), rep(.95/(n_sites/2), n_sites/2-1)))-0.05), "npc"), rot = 90)
grid::grid.text(c("Precipitation group", "Temperature group"), x = unit(cumsum(c(.05 +.9/3.9/2, rep(.9/3.9, 3))), "npc"), y = unit(.99, "npc"))
dev.off()
}
# Pre and Temp groups with DBH interaction show case ####
what_to_show = c("log_core_measurement_dbh" = expression(RW~(mm)))
sites_species_to_show = list(HKK = c("TOCI", "Toona ciliata"),
LillyDickey = c("LITU", "Lirodendron tulipifera"),
CedarBreaks = c("PIPU", "Picea pungens"))
what = "log_core_measurement_dbh"
all_plots <- list()
rm(leg)
for(site in names(sites_species_to_show)){
temp_env <- new.env()
load(paste0('results/', what, "/", site, "/env.RData"), envir = temp_env)
existing_plots <- ls(temp_env)[grepl("^p_int_", ls(temp_env))]
# get variable in order or Precipitation, Temperature and cloud groups (but complicated because, pet is in both temp and dtr),....
clim_var_group <- get("clim_var_group" , temp_env)
existing_plots <- existing_plots[match(c(1,2), sapply(gsub("p_int_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))]
if(any(!is.na(existing_plots))) {
# sandardize variable names
lapply(existing_plots[!is.na(existing_plots)], function(x) {
p <- get(x, temp_env)
ylim_p_int <- get("ylim_p_int", temp_env)
ylim_p_int <- ylim_p_int[!names(ylim_p_int) %in% "dbh"]
p <- p + ylim(range(ylim_p_int))
p$labels$x <- eval(parse(text = gsub(" | ", "~", gsub("-1", "\\^-1", paste0(gsub(substr(p$labels$x, 1, 4), v_names[substr(p$labels$x, 1, 3)], p$labels$x), ")")))))
p$theme$plot.background <- element_blank()
# keep only species we want
p$data <- p$data[p$data$species_code %in% sites_species_to_show[[site]][1],]
# remove speices legend
p <- p + guides(fill = FALSE, colour = FALSE)
# remove title legend
p <- p + theme(legend.title = element_blank())
# change legeng labels
p <- p + scale_linetype_manual(values = c("solid", "dotted"), labels=c("max DBH" ,"min DBH"))
# save legend
leg <<- ggplotGrob(p)$grobs[[15]]
#remove legend
p$theme$legend.position <- "none"
#save
assign(x, p, temp_env)
})
}
all_plots[[paste0(site, what)]] <- grid.arrange(do.call(arrangeGrob, c(lapply(existing_plots, function(x) {if(is.na(x)) grid.text(label = "no significant\nmain effect") else get(x, temp_env)}), ncol = 2)))
} # for(site in sites)
png(paste0("doc/manuscript/tables_figures/pre_temp_groups_dbh_interactions.png"), width = 8.2, height = 8.2, res = 300, units = "in")
grid.arrange(arrangeGrob(grobs = all_plots, vp= grid::viewport(width=0.95, height=0.95, y = 0.48), ncol = 1), arrangeGrob(leg), widths = c(8,1))
grid::grid.text(sites_abb[ names(sites_species_to_show)], x = unit(0.06, "npc"), y = unit(c(0.95, 0.63, 0.32), "npc"), just = "right")
grid::grid.text(sapply(sites_species_to_show, "[[", 2), x = unit(0.085, "npc"), y = unit(c(0.95, 0.63, 0.32), "npc"), gp = gpar(fontface = "italic"), just = "left")
grid::grid.text(what_to_show[what], x = unit(0.0265, "npc"), y = unit(c(0.95, 0.63, 0.32)-0.12, "npc"), rot = 90)
grid::grid.text(c("Precipitation group", "Temperature group"), x = unit(c(0.25,0.65), "npc"), y = unit(.98, "npc"))
dev.off()
# comparison with quilt ####
site = "SCBI"
v = "pet"
what = "log_core_measurement"
png("doc/manuscript/tables_figures/quilt_comparison.png", width = 10, height = 5, units = "in", res = 300)
layout(matrix(c(1, 1, 2, 3, 5, 5, 4, 6, 6, 7, 7, 7), nrow = 3), heights = c(3,2,1), widths = c(2.2, 1, 1, 2))
par(oma = c(1,0,2,0))
## a) quilt ####
img <- readTIFF(paste0("C:/Users/HerrmannV/Dropbox (Smithsonian)/GitHub/climate_sensitivity_cores/results/1901_2009/figures/monthly_correlation/CRU_", site, "_1901_2016/", v, ".tif"), as.is = T)
img1 <- img[30:(nrow(img)-150), 1:800, ] # keep only quilt half of plot
img2 <- img[300:(nrow(img)-150),800:(ncol(img)-60), ] # keep only legend
par(mar = c(3,0,0,0), mgp = c(3,0,0))
plot(0:100, 0:100, type = "n", axes = F, xlab = "", ylab = "")
rasterImage( img1 , xleft = 0, xright = 100,
ybottom = 0, ytop = 100)
rect(xleft = rev(seq(27, 94.5, length.out = 17))[5]+1,
ybottom = 0,
xright = rev(seq(27, 94.5, length.out = 17))[2],
ytop = 85,
lwd = 2) # add rectangle on May-Jul
mtext("a)", side = 3, adj = 0.1, line = -2, cex = .8)
axis(1, at = seq(27, 94.5, length.out = 17)+.2, labels = rev(c(0:15, "")), cex.axis = .65, line = -1, col.ticks = "white", hadj = 1.5, tcl=-.1
)
mtext("months prior to current August", side = 1, cex = .6, adj = 0.7, line = 0)
title(expression(bold(underline("Traditional analysis"))), xpd = NA, line = .5, adj = .7)
par(mar = c(0,5,1,2))
plot(0:100, 0:100, type = "n", axes = F, xlab = "", ylab = "")
rasterImage( matrix(as.vector(as.raster(img2)), ncol = nrow(img2))[ncol(img2):1,], xleft = 10, xright = 110,
ybottom = 0, ytop = 100)
text(x = -5, y = 50, labels = expression(bold("Correlation")), xpd = NA)
legend(x = -18, y = 180, pch = c(21, 24), legend = c("0.05", "0.0002"), xpd = NA, bty = "n", title = expression(bold("Significance")))
## b,c,d,e) climwin ####
img <- readPNG(list.files(paste0("results/", what, "/", site), pattern = v, full.names = T))
img1 <- img[80:(nrow(img)/2), c((2*ncol(img)/4): (3*ncol(img)/4)) ,] # beta linear
img2 <- img[80:(nrow(img)/2), c((3*ncol(img)/4): (4*ncol(img)/4)) ,] # beta quadratic
img3 <- img[80:(nrow(img)/2), c(1: (1*ncol(img)/4)) ,] # AIC
img4 <- img[c((nrow(img)/2)+1):nrow(img), c((1*ncol(img)/4+1): (2*ncol(img)/4)) ,] # response
for(i in 1:4) {
par(mar = c(0,0,0,0))
plot(0:100, 0:100, type = "n", axes = F, xlab = "", ylab = "")
rasterImage( get(paste0("img", i)) , xleft = 0, xright = 100,
ybottom = 0, ytop = 100)
if(i == 3) {
rect(0, 90, 100, 100, col = "white", border = "white")
mtext(expression(Delta*AIC), side = 3, line = -1, cex = .7)
mtext("(compared to null model)", side = 3, line = -1.7, cex = .7, adj = 1)
}
mtext(paste0(letters[i+1], ")"), side = 3, adj = 0.1, line = -2, cex = .8)
}
title(expression(bold(underline("Variable identification in"~ bolditalic("climwin") ~" step"))), xpd = NA, line = .5, adj = .55, outer = T)
## f) response curves ####
temp_env <- new.env()
load(paste0("results/", what, "/", site, "/env.RData"), temp_env)
p <- get(paste0("p_", v), temp_env)
p <- p + labs(y = expression(RW~(mm)))
p <- p + theme(legend.position="right", legend.text = element_text(size = 8)) # add legend
p$layers[c(1,2)] <- NULL # remove vertical line and shading
p$labels$x <- eval(parse(text = gsub(" | ", "~", gsub("-1", "\\^-1", paste0(gsub(substr(p$labels$x, 1, 4), v_names[substr(p$labels$x, 1, 3)], p$labels$x), ")"))))) # change variable label
p <- p + scale_fill_discrete(labels = gsub(" \\(\\d*\\)", "", levels(p$data$species))) + scale_colour_discrete(labels = gsub(" \\(\\d*\\)", "", levels(p$data$species)))
plot.new() ## suggested by @Josh
vps <- gridBase::baseViewports()
pushViewport(vps$figure) ## I am in the space of the autocorrelation plot
vp1 <- plotViewport(c(2,0,2,0)) ## create new vp with margins, you play with this values
print(p, vp = vp1)
# windowsFonts(Times=windowsFont("TT Times New Roman"))
grid.text(paste0(letters[6], ")"),x = 0.1, y = .90, gp=gpar(fontsize=9.8, fontfamily=""))
title(expression(bold(underline("GLS output"))), xpd = NA, line = .5, adj = .85, outer = T)
# dev.off()####
dev.off()
# create composite image of all models for each sites + show case 2 sites ####
what_to_show <- c("log_core_measurement_dbh" = expression(RW~(mm)), "log_BAI_dbh" = expression(BAI~(cm^2)), "log_agb_inc_dbh" = expression(Delta*AGB~(kg)))
sites_to_show_case <- c("SCBI", "NewMexico")
for(with_Year in c(FALSE, TRUE)) {
show_case <- list()
for(site in sites_with_dbh){
all_plots <- list()
for( what in names(what_to_show)) {
temp_env <- new.env()
if(with_Year) load(paste0('results/with_Year/', what, "/", site, "/env.RData"), envir = temp_env) # to get the Year plot
if(!with_Year) load(paste0('results/', what, "/", site, "/env.RData"), envir = temp_env) # to get all other plots
existing_plots <- ls(temp_env)[grepl("^p_", ls(temp_env))]
# get variable in order or Precipitation, Temperature and cloud groups (but complicated because, pet is in both temp and dtr),....
clim_var_group <- get("clim_var_group" , temp_env)
if(with_Year) existing_plots <- existing_plots[c(1, length(existing_plots), na.omit(match(c(1,2), sapply(gsub("p_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))))]
if(!with_Year) existing_plots <- existing_plots[c(1, na.omit(match(c(1,2), sapply(gsub("p_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))))]
# change ylim to scale across sites
lapply(existing_plots, function(x) assign(x, get(x, temp_env) + ylim(range(get("ylim_p", temp_env))* ifelse(what == "log_agb_inc_dbh", 1000, 1)), envir = temp_env))
# if p is AGB, convert to kg
if(what == "log_agb_inc_dbh") lapply(existing_plots, function(x) {
p <- get(x, temp_env)
p$data[c("expfit", "lwr", "upr")] <- p$data[c("expfit", "lwr", "upr")]*1000
p$layers[[1]]$aes_params$ymin <- p$layers[[1]]$aes_params$ymin * 1000
p$layers[[1]]$aes_params$ymax <- p$layers[[1]]$aes_params$ymax * 1000
assign(x, p, envir = temp_env)
})
# standardize variable names
lapply(existing_plots[switch(as.character(with_Year), "TRUE" = -2, "FALSE" = c(1:length(existing_plots)))], function(x) { # -2 is to not do it for Year
p <- get(x, temp_env)
p$labels$x <- eval(parse(text = gsub(" | ", "~", gsub("-1", "\\^-1", paste0(gsub(substr(p$labels$x, 1, 4), v_names[tolower(substr(p$labels$x, 1, 3))], p$labels$x), ")")))))
assign(x, p, temp_env)
})
# get the species colors
species_colors <- get("species_colors", temp_env)
# get the legend
# assign("leg", g_legend(), envir = temp_env)
# existing_plots <- c(existing_plots, "leg")
all_plots[[what]] <- do.call(cowplot::plot_grid, c(lapply(existing_plots, function(x) {if(is.na(x)) grid.text(label = "no significant\nmain effect") else get(x, temp_env)}), ncol = ifelse(with_Year, 4, 3), list(align = "hv")))
if (site %in% sites_to_show_case) show_case[[paste0(site, what)]] <- all_plots[[what]] #grid.arrange(do.call(arrangeGrob, c(lapply(existing_plots[-4], function(x) {if(is.na(x)) grid.rect(gp=gpar(col="white")) else get(x, temp_env)}), ncol = 3)))
}
png(paste0("results/composite_plots/", site, ifelse(with_Year, "_with_Year", ""), ".png"), width = 10, height = 10, res = 300, units = "in")
grid.arrange(
arrangeGrob(grobs = all_plots, ncol = 1),
arrangeGrob( all_legends[[site]]),
ncol = 2, widths = c(4,1))
# grid.arrange(grobs = all_plots, vp= grid::viewport(width=0.95, height=0.95), ncol = 1)
grid::grid.text(what_to_show, x = unit(0.01, "npc"), y = unit(rev(cumsum(c(1/length(what_to_show)/2, rep(1/length(what_to_show), length(what_to_show)-1)))), "npc"), rot = 90)
dev.off()
# if(site %in% sites_to_show_case){
# # save the plot
# show_case[[paste0(site, "leg")]] <- get("leg", temp_env)
# }
}
# png(paste0("doc/manuscript/tables_figures/show_case_response_plots", ifelse(with_Year, "_with_Year", ""), ".png"), width = 10, height = 8, res = 300, units = "in")
grid.arrange(
arrangeGrob(grobs = show_case, layout_matrix = matrix(c(1, 2, 3, 4, 5, 6), nrow = 3)),
arrangeGrob( grobs = all_legends_2_cols[sites_to_show_case], ncol = 2),
ncol = 1, heights = c(2,1))
# grid.arrange(grobs = show_case, vp= grid::viewport(width=0.95, height=0.95), layout_matrix = matrix(c(1, 2, 3, 4, 5, 6, 7, 8), nrow = 4))
grid::grid.text(what_to_show, x = unit(0.015, "npc"), y = unit((rev(cumsum(c(1.3/length(what_to_show)/2, rep(1.3/2/length(what_to_show), length(what_to_show)-1)))))+0.25, "npc"), rot = 90)
grid::grid.text(sites_abb[sites_to_show_case[order(match(sites_to_show_case, sites))]], x = unit(cumsum(c(.05 +.9/2/2, rep(.9/2, 1))), "npc"), y = unit(.99, "npc"))
# dev.off()
} # for(with_Year in c(FALSE, TRUE))
# give site abbrevationtion in paper
sites_abb <- list(BCI = "BCNM",
HKK = "HKK",
NewMexico = "LT",
CedarBreaks = "CB",
SCBI = "SCBI",
LillyDickey = "LDW",
HarvardForest = "HF",
# Nebraska = "NE",
Niobara = "NIO",
Hansley = "NE",
Zofin = "ZOF",
ScottyCreek = "SC")
# order sites by average temperature
MAT_order <- read.csv("doc/manuscript/tables_figures/sites.csv")
sites <- names(sites_abb[match(MAT_order[,1], sites_abb)])
# load all legends ####
load("results/all_legends.Rdata")
# sites with dbh
sites_with_dbh <- sites #[-grep("CedarBreaks", sites)]
# standardize variable names ####
v_names <- list(tmn = "expression(T[min]~",
tmx = "expression(T[max]~",
tmp = "expression(T[mean]~",
pet = "expression(PET~",
pre = "expression(PPT~",
wet = "expression(PDF~",
dbh = "expression(DBH~")
with_Year = TRUE
site = "NewMexico"
what = "log_core_measurement_dbh"
temp_env <- new.env()
all_plots <- list()
load(paste0('results/with_Year/', what, "/", site, "/env.RData"), envir = temp_env) # to get the Year plot
existing_plots <- ls(temp_env)[grepl("^p_", ls(temp_env))]
# get variable in order or Precipitation, Temperature and cloud groups (but complicated because, pet is in both temp and dtr),....
clim_var_group <- get("clim_var_group" , temp_env)
if(with_Year) existing_plots <- existing_plots[c(1, length(existing_plots), na.omit(match(c(1,2), sapply(gsub("p_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))))]
if(!with_Year) existing_plots <- existing_plots[c(1, na.omit(match(c(1,2), sapply(gsub("p_", "", existing_plots), function(x) grep(x, clim_var_group)[1]))))]
# change ylim to scale across sites
lapply(existing_plots, function(x) assign(x, get(x, temp_env) + ylim(range(get("ylim_p", temp_env))* ifelse(what == "log_agb_inc_dbh", 1000, 1)), envir = temp_env))
# if p is AGB, convert to kg
if(what == "log_agb_inc_dbh") lapply(existing_plots, function(x) {
p <- get(x, temp_env)
p$data[c("expfit", "lwr", "upr")] <- p$data[c("expfit", "lwr", "upr")]*1000
p$layers[[1]]$aes_params$ymin <- p$layers[[1]]$aes_params$ymin * 1000
p$layers[[1]]$aes_params$ymax <- p$layers[[1]]$aes_params$ymax * 1000
assign(x, p, envir = temp_env)
})
# standardize variable names
lapply(existing_plots[switch(as.character(with_Year), "TRUE" = -2, "FALSE" = c(1:length(existing_plots)))], function(x) { # -2 is to not do it for Year
p <- get(x, temp_env)
p$labels$x <- eval(parse(text = gsub(" | ", "~", gsub("-1", "\\^-1", paste0(gsub(substr(p$labels$x, 1, 4), v_names[tolower(substr(p$labels$x, 1, 3))], p$labels$x), ")")))))
assign(x, p, temp_env)
})
#
# # keep only PIPO
# p$layers[[1]]$aes_params$linetype <- p$layers[[1]]$aes_params$linetype[p$data$species_code == "PIPO"]
# p$data <- p$data[p$data$species_code == "PIPO", ]
# p
#
# # add data points
#
temp_all_env <- new.env()
load(paste0('results/with_Year/', what, "/", site, "_all_env.RData"), envir = temp_all_env) # to get the Year plot
ls(temp_all_env)
dp <- get("PIPO_best_model", temp_all_env)$data
# p + geom_point(data = dp, mapping = aes(x = Year, y = log_core_measurement))
lapply(existing_plots, function(x) { # -2 is to not do it for Year
p <- get(x, temp_env)
# keep only PIPO
# p$layers[[grep("linetype", sapply(lapply(p$layers, function(x) x$aes_params), names))]]$aes_params$linetype <- p$layers[[grep("linetype", sapply(lapply(p$layers, function(x) x$aes_params), names))]]$aes_params$linetype[p$data$species_code == "PIPO"]
p$data <- p$data[p$data$species_code == "PIPO", ]
# p
# add data points
dp$x <- dp[, gsub("p_", "", x)]
p <- p + geom_point(data = dp, mapping = aes(x = x, y = exp(log_core_measurement)), #, col = as.numeric(dp$coreID) ,
alpha= 0.1)+ ylim(range(c(p$data$upr, exp(dp$log_core_measurement))))
# p <- p + scale_y_continuous(trans = "log", labels = scales::scientific)
# remove rectangle
p$layers[grepl("Rect|Vline", sapply(p$layers, function(x) class(x$geom)[[1]]))] <- NULL
# reorder layers
p$layers <- p$layers[rev(1:length(p$layers))]
# save
assign(x, p, temp_env)
})
all_plots[[what]] <- do.call(cowplot::plot_grid, c(lapply(existing_plots, function(x) {if(is.na(x)) grid.text(label = "no significant\nmain effect") else get(x, temp_env)}), ncol = ifelse(with_Year, 4, 3), list(align = "hv")))
png(paste0("doc/manuscript/tables_figures/schematic_figure_bottom_part.png"), width = 10, height = 3, res = 300, units = "in")
all_plots[[what]]
grid::grid.text("RW (mm)", x = unit(0.015, "npc"), y = 0.5, rot = 90)
dev.off()
# get the legend ####
# all_Biol <- get("all_Biol", temp_all_env)
# species_colors <- get("species_colors", temp_all_env)
# names(species_colors) <- substr(names(species_colors), 1,4)
#
# x <- all_Biol[[site]]
# x <- x[!is.na(x$dbh),]
# # x <- x[x$species_code %in% summary_data$species_code[summary_data$site %in% site],]
# x <- droplevels(x[!duplicated(x$species_code) & x$species_code %in% "PIPO",])
#
# a.gplot <- ggplot(x, aes(x = Year, y = dbh)) + geom_line(aes(group = paste(genus, species), col = paste(genus, species))) + geom_ribbon(aes(ymin=min(dbh), ymax=max(dbh), bg = paste(genus, species)), alpha=0.25) + labs(col = sites_abb[[site]], bg = sites_abb[[site]])+ theme(legend.background = element_blank(), legend.box.background =element_blank(), legend.justification = "left", legend.margin=margin(0,0,0,0), legend.box.margin=margin(0,0,0,10))
#
# leg <- ggplot_gtable(ggplot_build(a.gplot))$grobs[[which(sapply( ggplot_gtable(ggplot_build(a.gplot))$grobs, function(x) x$name) == "guide-box")]]
#
# # make plot
# grid.arrange(
# all_plots[[what]] , leg,
# ncol = 2, widths = c(6,1))
#
# grid::grid.text("RW (mm)", x = unit(0.015, "npc"), y = 0.5, rot = 90)
#