-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
141 lines (117 loc) · 5.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import sys
import time
import argparse
import ast
import logging
import numpy as np
import paddle.fluid as fluid
from model import ResNet3D
from reader import KineticsReader
from config import parse_config, merge_configs, print_configs
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(filename='logger.log', level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser("Paddle Video train script")
parser.add_argument(
'--model_name',
type=str,
default='res3d',
help='name of model to train.')
parser.add_argument(
'--config',
type=str,
default='configs/res3d.txt',
help='path to config file of model')
parser.add_argument(
'--batch_size',
type=int,
default=None,
help='training batch size. None to use config file setting.')
parser.add_argument(
'--learning_rate',
type=float,
default=None,
help='learning rate use for training. None to use config file setting.')
parser.add_argument(
'--pretrain',
type=str,
default=None,
help='path to pretrain weights. None to use default weights path in ~/.paddle/weights.'
)
parser.add_argument(
'--use_gpu',
type=ast.literal_eval,
default=False,
help='default use gpu.')
parser.add_argument(
'--epoch',
type=int,
default=100,
help='epoch number, 0 for read from config file')
parser.add_argument(
'--save_dir',
type=str,
default='checkpoints_models',
help='directory name to save train snapshoot')
args = parser.parse_args()
return args
def train(args):
# parse config
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
with fluid.dygraph.guard(place):
config = parse_config(args.config)
train_config = merge_configs(config, 'train', vars(args))
print_configs(train_config, 'Train')
# train_model = TSN1.TSNResNet('TSN', train_config['MODEL']['num_layers'],
# train_config['MODEL']['num_classes'],
# train_config['MODEL']['seg_num'], 0.00002)
# train_model = ResNet3D.ResNet3D('res3d', train_config['MODEL']['num_layers'],
# train_config['MODEL']['num_classes'],
# train_config['MODEL']['seg_num'], 0.00002)
train_model = ResNet3D.ResNet3D( train_config['MODEL']['num_layers'],
train_config['MODEL']['num_classes'],
)
# fluid.save_dygraph(train_model.state_dict(), 'model/ResNet3D1') #########################测试
# inner_state_dict = train_model.state_dict()
# print(len(inner_state_dict))
# for name, para in inner_state_dict.items():
# print(name)
opt = fluid.optimizer.Momentum(0.001, 0.9, parameter_list=train_model.parameters())
if args.pretrain:
# 加载上一次训练的模型,继续训练
model, _ = fluid.dygraph.load_dygraph(args.save_dir + '/res3d_model')
train_model.load_dict(model)
# build model
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# get reader
train_config.TRAIN.batch_size = train_config.TRAIN.batch_size
train_reader = KineticsReader(args.model_name.upper(), 'train', train_config).create_reader()
epochs = args.epoch or train_model.epoch_num()
for i in range(epochs):
for batch_id, data in enumerate(train_reader()):
dy_x_data = np.array([x[0] for x in data]).astype('float32')
y_data = np.array([[x[1]] for x in data]).astype('int64')
img = fluid.dygraph.to_variable(dy_x_data)
label = fluid.dygraph.to_variable(y_data)
label.stop_gradient = True
out, acc = train_model(img, label)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
train_model.clear_gradients()
if batch_id % 12 == 0:
logger.info("Loss at epoch {} step {}: {}, acc: {}".format(i, batch_id, avg_loss.numpy(), acc.numpy()))
print("Loss at epoch {} step {}: {}, acc: {}".format(i, batch_id, avg_loss.numpy(), acc.numpy()))
fluid.dygraph.save_dygraph(train_model.state_dict(), args.save_dir + '/res3d_model')
logger.info("Final loss: {}".format(avg_loss.numpy()))
print("Final loss: {}".format(avg_loss.numpy()))
if __name__ == "__main__":
args = parse_args()
# check whether the installed paddle is compiled with GPU
logger.info(args)
train(args)