-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathumatrix_gpu.cuh
167 lines (140 loc) · 3.77 KB
/
umatrix_gpu.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#pragma once
#include <cassert>
#include <initializer_list>
#include <iostream>
#include <utility>
#include "errorcheck.cuh"
template <class T>
class MatrixGPU
{
private:
std::size_t m, n;
T *data;
auto memsize(void) const noexcept { return sizeof(T) * size(); }
void allocate_uninit(void)
{
cudaCheck(
cudaMallocManaged(reinterpret_cast<void **>(&data), memsize()));
}
public:
MatrixGPU(const std::size_t row, const std::size_t col) : m(row), n(col)
{
allocate_uninit();
for (auto ii = 0U; ii < size(); ++ii)
{
data[ii] = T();
}
}
MatrixGPU(void) : MatrixGPU(0, 0) {}
MatrixGPU(const std::size_t row, const std::size_t col,
std::initializer_list<T> init)
: m(row), n(col)
{
assert(init.size() == size());
auto p = data;
for (auto &&initj : init)
{
*(p++) = initj;
}
}
MatrixGPU(const MatrixGPU &src) : m(src.m), n(src.n)
{
allocate_uninit();
cudaCheck(cudaMemcpy(static_cast<void *>(data),
static_cast<void *>(src.data), memsize(),
cudaMemcpyDefault));
}
MatrixGPU &operator=(const MatrixGPU &rhs) &
{
m = rhs.m;
n = rhs.n;
allocate_uninit();
cudaCheck(cudaMemcpy(static_cast<void *>(data),
static_cast<void>(rhs.data), memsize(),
cudaMemcpyDefault));
return *this;
}
MatrixGPU(MatrixGPU &&rhs) noexcept : m(rhs.m), n(rhs.n), data(rhs.data)
{
rhs.data = nullptr;
}
MatrixGPU &operator=(MatrixGPU &&rhs) &noexcept
{
m = rhs.m;
n = rhs.n;
data = rhs.data;
rhs.data = nullptr;
return *this;
}
~MatrixGPU() noexcept
{
if (data != nullptr)
{
cudaCheck(cudaFree(data));
}
}
void print(void) const
{
pull();
for (std::size_t i = 0; i < m; ++i)
{
for (std::size_t j = 0; j < n; ++j)
{
std::cout << data[index(i, j)] << (j + 1 == n ? "\n" : " ");
}
}
}
auto index(const std::size_t i, const std::size_t j) const noexcept
{
assert(i < rows());
assert(j < cols());
return i * n + j;
}
decltype(auto) operator()(const std::size_t i, const std::size_t j) const
{
assert(i < rows());
assert(j < cols());
assert(index(i, j) < size());
return data[index(i, j)];
}
decltype(auto) operator()(const std::size_t i, const std::size_t j)
{
assert(i < rows());
assert(j < cols());
assert(index(i, j) < size());
return data[index(i, j)];
}
decltype(auto) operator[](const std::size_t ii) const
{
assert(ii < size());
return data[ii];
}
decltype(auto) operator[](const std::size_t ii)
{
assert(ii < size());
return data[ii];
}
auto rows(void) const noexcept { return m; }
auto cols(void) const noexcept { return n; }
auto size(void) const noexcept { return m * n; }
void swap(MatrixGPU &src) noexcept
{
std::swap(src.m, m);
std::swap(src.n, n);
std::swap(src.data, data);
}
auto raw(void) { return data; }
auto raw(void) const { return data; }
void pull(void) const
{
cudaCheck(cudaMemPrefetchAsync(static_cast<void *>(data), memsize(),
cudaCpuDeviceId));
}
void push(void) const
{
int dev;
cudaCheck(cudaGetDevice(&dev));
cudaCheck(
cudaMemPrefetchAsync(static_cast<void *>(data), memsize(), dev));
}
};