-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_conditional.py
125 lines (111 loc) · 3.91 KB
/
test_conditional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import os
import argparse
import pytorch_lightning as pl
import wandb
from train_conditional import sel_config, set_save_path, set_device_accelerator, config_adjustments
from pl_module_callbacks import LatentDiffusionCondModule, DacCLAPDataModule
from pl_module_callbacks import ExceptionCallback, DemoCallback
def main(args):
# determine config type according to pattern
config = sel_config(args.model_size, args.rvq_pattern)
print(config)
save_path = set_save_path(args.save_path)
device, accelerator = set_device_accelerator()
# torch.manual_seed(0)
config = config_adjustments(
config,
batch_size = args.batch_size,
prediction_type = args.prediction_type,
scheduler = args.scheduler,
frame_len_dac = args.frame_len_dac
)
# get dataset
data_module = DacCLAPDataModule(
h5_dir = args.h5_dir,
config = config,
val_h5_dir = args.h5_dir,
)
print("Dataset created")
# get pl diffusion module (model defined inside)
diffusion_pl_module = LatentDiffusionCondModule(
config,
ckpt_path = args.load_ckpt_path,
)
print("Diffusion model created")
# define callbacks
exc_callback = ExceptionCallback()
demo_callback = DemoCallback(config, args.save_path)
# setup wandb logger
if args.wandb_key is not None:
wandb.login(key = args.wandb_key)
wandb_logger = pl.loggers.WandbLogger(project='test_latent_dac_diffusion_text_clap', log_model='all')
wandb_logger.watch(diffusion_pl_module)
# push_wandb_config(wandb_logger, args)
# define pl training class
if args.num_gpus > 1:
strategy = 'ddp_find_unused_parameters_true'
else:
strategy = 'auto'
# define pl training class
diffusion_trainer = pl.Trainer(
devices = args.num_gpus,
accelerator = accelerator,
strategy = strategy,
precision = 16,
accumulate_grad_batches = 1,
callbacks = [demo_callback, exc_callback], # DEBUG
logger = wandb_logger,
log_every_n_steps = 1,
val_check_interval = 1.0,
max_epochs = config.max_epochs,
)
# start training
diffusion_trainer.test(diffusion_pl_module, datamodule=data_module)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Args in training DAC RVQ diffusion.')
parser.add_argument(
'-h5-dir', type=str,
help='the audio h5 dataset path encoding dac and clap embeddings (multiple files)'
)
parser.add_argument(
'--save-path', type=str, default='',
help='the directory that model results and checkpoints are saved'
)
parser.add_argument(
'--num-gpus', type=int, default=1,
help='the number of gpus'
)
parser.add_argument(
'--batch-size', type=int, default=1,
)
parser.add_argument(
'--load-ckpt-path', type=str, nargs='?',
help='the checkpoint path to load'
)
parser.add_argument(
'--frame-len-dac', type=int, nargs='?',
help='the length of dac latents to generate. If not specified, then use the config file'
)
parser.add_argument(
'--rvq-pattern', type=str, default='parallel',
help='choose from "parallel", "flattened" and "VALL-E"; default: "parallel"'
)
parser.add_argument(
'--model-size', type=str, default='large',
help='choose from "large" and "small"; default: "large"'
)
parser.add_argument(
'--prediction-type', type=str, default='v_prediction',
help='choose from "epsilon", "sample", "v_prediction"; default: "sample"'
)
parser.add_argument(
'--scheduler', type=str, default='handcrafted',
help='choose from "handcrafted", "diffusers"; default: "handcrafted"'
)
parser.add_argument(
'--wandb-key', type=str, nargs='?',
help='for login to wandb'
)
args = parser.parse_args()
main(args)