Skip to content

Commit

Permalink
Merge pull request #114 from ENSTA-U2IS-AI/dev
Browse files Browse the repository at this point in the history
🔧 Maintenance and small improvements
  • Loading branch information
alafage authored Sep 24, 2024
2 parents 8dc7b3f + d9b5a88 commit 58e5ad1
Show file tree
Hide file tree
Showing 22 changed files with 103 additions and 37 deletions.
13 changes: 12 additions & 1 deletion docs/source/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -259,7 +259,6 @@ Others
:nosignatures:
:template: class.rst

AUSE
GroupingLoss

Regression
Expand Down Expand Up @@ -294,6 +293,18 @@ Segmentation

MeanIntersectionOverUnion

Others
^^^^^^

.. currentmodule:: torch_uncertainty.metrics

.. autosummary::
:toctree: generated/
:nosignatures:
:template: class.rst

AUSE

Losses
------

Expand Down
2 changes: 1 addition & 1 deletion docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
f"{datetime.now().year!s}, Adrien Lafage and Olivier Laurent"
)
author = "Adrien Lafage and Olivier Laurent"
release = "0.2.2"
release = "0.2.2.post0"

# -- General configuration ---------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
Expand Down
5 changes: 3 additions & 2 deletions docs/source/quickstart.rst
Original file line number Diff line number Diff line change
Expand Up @@ -160,10 +160,11 @@ backbone with the following code:

.. code:: python
from torch_uncertainty.models.resnet import packed_resnet18
from torch_uncertainty.models.resnet import packed_resnet
model = packed_resnet18(
model = packed_resnet(
in_channels = 3,
arch=18,
num_estimators = 4,
alpha = 2,
gamma = 2,
Expand Down
2 changes: 1 addition & 1 deletion docs/source/references.rst
Original file line number Diff line number Diff line change
Expand Up @@ -254,7 +254,7 @@ For the conflictual loss, consider citing:
**On the Calibration of Epistemic Uncertainty: Principles, Paradoxes and Conflictual Loss**

* Authors: *Mohammed Fellaji, Frédéric Pennerath, Brieuc Conan-Guez, and Miguel Couceiro*
* Paper: `ArXiv 2024 <https://arxiv.org/pdf/2407.12211`__.
* Paper: `ArXiv 2024 <https://arxiv.org/pdf/2407.12211>`__.

Metrics
-------
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ build-backend = "flit_core.buildapi"

[project]
name = "torch_uncertainty"
version = "0.2.2"
version = "0.2.2.post0"
authors = [
{ name = "ENSTA U2IS", email = "olivier.laurent@ensta-paris.fr" },
{ name = "Adrien Lafage", email = "adrienlafage@outlook.com" },
Expand Down
13 changes: 0 additions & 13 deletions pyrightconfig.json

This file was deleted.

File renamed without changes.
2 changes: 1 addition & 1 deletion tests/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import pytest
import torch
from huggingface_hub.utils._errors import (
from huggingface_hub.errors import (
HfHubHTTPError,
RepositoryNotFoundError,
)
Expand Down
3 changes: 3 additions & 0 deletions torch_uncertainty/baselines/classification/resnet.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from typing import Literal

from torch import nn
from torch.optim import Optimizer

from torch_uncertainty.models import mc_dropout
from torch_uncertainty.models.resnet import (
Expand Down Expand Up @@ -55,6 +56,7 @@ def __init__(
normalization_layer: type[nn.Module] = nn.BatchNorm2d,
num_estimators: int = 1,
dropout_rate: float = 0.0,
optim_recipe: dict | Optimizer | None = None,
mixup_params: dict | None = None,
last_layer_dropout: bool = False,
width_multiplier: float = 1.0,
Expand Down Expand Up @@ -229,6 +231,7 @@ def __init__(
model=model,
loss=loss,
is_ensemble=version in ENSEMBLE_METHODS,
optim_recipe=optim_recipe,
format_batch_fn=format_batch_fn,
mixup_params=mixup_params,
eval_ood=eval_ood,
Expand Down
7 changes: 7 additions & 0 deletions torch_uncertainty/baselines/classification/vgg.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from typing import Literal

from torch import nn
from torch.optim import Optimizer

from torch_uncertainty.models import mc_dropout
from torch_uncertainty.models.vgg import (
Expand Down Expand Up @@ -32,6 +33,7 @@ def __init__(
num_estimators: int = 1,
dropout_rate: float = 0.0,
last_layer_dropout: bool = False,
optim_recipe: dict | Optimizer | None = None,
mixup_params: dict | None = None,
groups: int = 1,
alpha: int | None = None,
Expand All @@ -52,6 +54,10 @@ def __init__(
num_classes (int): Number of classes to predict.
in_channels (int): Number of input channels.
loss (nn.Module): Training loss.
optim_recipe (Any): optimization recipe, corresponds to
what expect the `LightningModule.configure_optimizers()
<https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html#configure-optimizers>`_
method.
version (str):
Determines which VGG version to use:
Expand Down Expand Up @@ -164,6 +170,7 @@ def __init__(
loss=loss,
is_ensemble=version in ENSEMBLE_METHODS,
format_batch_fn=format_batch_fn,
optim_recipe=optim_recipe,
mixup_params=mixup_params,
eval_ood=eval_ood,
ood_criterion=ood_criterion,
Expand Down
3 changes: 3 additions & 0 deletions torch_uncertainty/baselines/classification/wideresnet.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
from typing import Literal

from torch import nn
from torch.optim import Optimizer

from torch_uncertainty.models import mc_dropout
from torch_uncertainty.models.wideresnet import (
Expand Down Expand Up @@ -39,6 +40,7 @@ def __init__(
style: str = "imagenet",
num_estimators: int = 1,
dropout_rate: float = 0.0,
optim_recipe: dict | Optimizer | None = None,
mixup_params: dict | None = None,
groups: int = 1,
last_layer_dropout: bool = False,
Expand Down Expand Up @@ -186,6 +188,7 @@ def __init__(
loss=loss,
is_ensemble=version in ENSEMBLE_METHODS,
format_batch_fn=format_batch_fn,
optim_recipe=optim_recipe,
mixup_params=mixup_params,
eval_ood=eval_ood,
eval_grouping_loss=eval_grouping_loss,
Expand Down
1 change: 0 additions & 1 deletion torch_uncertainty/datamodules/segmentation/cityscapes.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,6 @@ def __init__(
pin_memory=pin_memory,
persistent_workers=persistent_workers,
)

self.dataset = Cityscapes
self.mode = "fine"
self.crop_size = _pair(crop_size)
Expand Down
45 changes: 43 additions & 2 deletions torch_uncertainty/datasets/segmentation/cityscapes.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from collections.abc import Callable
from typing import Any

import torch
Expand All @@ -10,7 +11,35 @@


class Cityscapes(TVCityscapes):
def encode_target(self, target: Image.Image) -> Image.Image:
def __init__(
self,
root: str,
split: str = "train",
mode: str = "fine",
target_type: torch.List[str] | str = "instance",
transform: Callable[..., Any] | None = None,
target_transform: Callable[..., Any] | None = None,
transforms: Callable[..., Any] | None = None,
) -> None:
super().__init__(
root,
split,
mode,
target_type,
transform,
target_transform,
transforms,
)
train_id_to_color = [
c.color
for c in self.classes
if (c.train_id != -1 and c.train_id != 255)
]
train_id_to_color.append([0, 0, 0])
self.train_id_to_color = torch.tensor(train_id_to_color)

@classmethod
def encode_target(cls, target: Image.Image) -> Image.Image:
"""Encode target image to tensor.
Args:
Expand All @@ -23,7 +52,7 @@ def encode_target(self, target: Image.Image) -> Image.Image:
colored_target = rearrange(colored_target, "c h w -> h w c")
target = torch.zeros_like(colored_target[..., :1])
# convert target color to index
for cityscapes_class in self.classes:
for cityscapes_class in cls.classes:
target[
(
colored_target
Expand All @@ -33,6 +62,18 @@ def encode_target(self, target: Image.Image) -> Image.Image:

return F.to_pil_image(rearrange(target, "h w c -> c h w"))

def decode_target(self, target: torch.Tensor) -> torch.Tensor:
"""Decode target tensor to RGB tensor.
Args:
target (torch.Tensor): Target RGB tensor.
Returns:
Image.Image: Decoded target.
"""
target[target == 255] = -1
return self.train_id_to_color[target]

def __getitem__(self, index: int) -> tuple[Any, Any]:
"""Get the sample at the given index.
Expand Down
2 changes: 1 addition & 1 deletion torch_uncertainty/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
from .classification import (
AUGRC,
AURC,
AUSE,
FPR95,
AdaptiveCalibrationError,
BrierScore,
Expand All @@ -29,3 +28,4 @@
SILog,
ThresholdAccuracy,
)
from .sparsification import AUSE
1 change: 0 additions & 1 deletion torch_uncertainty/metrics/classification/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,5 +17,4 @@
RiskAt80Cov,
RiskAtxCov,
)
from .sparsification import AUSE
from .variation_ratio import VariationRatio
4 changes: 2 additions & 2 deletions torch_uncertainty/metrics/classification/risk_coverage.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@ def plot(
ax.set_xlabel("Coverage (%)", fontsize=16)
ax.set_ylabel("Risk - Error Rate (%)", fontsize=16)
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_ylim(0, min(100, np.ceil(error_rates.max() * 100)))
ax.set_aspect("equal", "box")
ax.legend(loc="upper right")
fig.tight_layout()
Expand Down Expand Up @@ -269,7 +269,7 @@ def plot(
ax.set_xlabel("Coverage (%)", fontsize=16)
ax.set_ylabel("Generalized Risk (%)", fontsize=16)
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_ylim(0, min(100, np.ceil(error_rates.max() * 100)))
ax.set_aspect("equal", "box")
ax.legend(loc="upper right")
fig.tight_layout()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def __init__(self, **kwargs) -> None:
Inputs:
- :attr:`scores`: Uncertainty scores of shape :math:`(B,)`. A higher
score means a higher uncertainty.
- :attr:`errors`: Binary errors of shape :math:`(B,)`,
- :attr:`errors`: Errors of shape :math:`(B,)`,
where :math:`B` is the batch size.
Expand All @@ -52,7 +52,7 @@ def update(self, scores: Tensor, errors: Tensor) -> None:
Args:
scores (Tensor): uncertainty scores of shape :math:`(B,)`
errors (Tensor): binary errors of shape :math:`(B,)`
errors (Tensor): errors of shape :math:`(B,)`
"""
self.scores.append(scores)
self.errors.append(errors)
Expand Down Expand Up @@ -149,7 +149,7 @@ def _ause_rejection_rate_compute(
Args:
scores (Tensor): uncertainty scores of shape :math:`(B,)`
errors (Tensor): binary errors of shape :math:`(B,)`
errors (Tensor): errors of shape :math:`(B,)`
"""
num_samples = errors.size(0)

Expand Down
12 changes: 10 additions & 2 deletions torch_uncertainty/routines/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,7 +392,7 @@ def training_step(
loss = self.loss(logits, target, self.current_epoch)
if self.needs_step_update:
self.model.update_wrapper(self.current_epoch)
self.log("train_loss", loss)
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss

def validation_step(
Expand Down Expand Up @@ -501,7 +501,15 @@ def test_step(
self.ood_logit_storage.append(logits.detach().cpu())

def on_validation_epoch_end(self) -> None:
self.log_dict(self.val_cls_metrics.compute(), sync_dist=True)
self.log_dict(
self.val_cls_metrics.compute(), logger=True, sync_dist=True
)
self.log(
"Acc%",
self.val_cls_metrics["cls/Acc"].compute() * 100,
prog_bar=True,
logger=False,
)
self.val_cls_metrics.reset()

if self.eval_grouping_loss:
Expand Down
2 changes: 1 addition & 1 deletion torch_uncertainty/routines/pixel_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,7 @@ def training_step(

if self.needs_step_update:
self.model.update_wrapper(self.current_epoch)
self.log("train_loss", loss)
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss

def validation_step(
Expand Down
2 changes: 1 addition & 1 deletion torch_uncertainty/routines/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ def training_step(

if self.needs_step_update:
self.model.update_wrapper(self.current_epoch)
self.log("train_loss", loss)
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss

def validation_step(
Expand Down
11 changes: 9 additions & 2 deletions torch_uncertainty/routines/segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ def training_step(
loss = self.loss(logits[valid_mask], target[valid_mask])
if self.needs_step_update:
self.model.update_wrapper(self.current_epoch)
self.log("train_loss", loss)
self.log("train_loss", loss, prog_bar=True, logger=True)
return loss

def validation_step(
Expand Down Expand Up @@ -214,7 +214,14 @@ def test_step(self, batch: tuple[Tensor, Tensor], batch_idx: int) -> None:
self.test_sbsmpl_seg_metrics.update(*self.subsample(probs, targets))

def on_validation_epoch_end(self) -> None:
self.log_dict(self.val_seg_metrics.compute(), sync_dist=True)
self.log_dict(
self.val_seg_metrics.compute(), logger=True, sync_dist=True
)
self.log(
"mIoU%",
self.val_seg_metrics["seg/mIoU"].compute() * 100,
prog_bar=True,
)
self.log_dict(self.val_sbsmpl_seg_metrics.compute(), sync_dist=True)
self.val_seg_metrics.reset()
self.val_sbsmpl_seg_metrics.reset()
Expand Down
2 changes: 1 addition & 1 deletion torch_uncertainty/utils/hub.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import torch
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from huggingface_hub.errors import EntryNotFoundError
from safetensors.torch import load_file


Expand Down

0 comments on commit 58e5ad1

Please sign in to comment.