-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameters_generate.py
101 lines (90 loc) · 3.64 KB
/
parameters_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# network_generate.py
# Alessio Burrello <alessio.burrello@unibo.it>
#
# Copyright (C) 2019-2020 University of Bologna
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import importlib
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import sys
from copy import deepcopy
from mako.template import Template
from collections import OrderedDict
def print_test_vector(x):
x = x.numpy()
try:
np.set_printoptions(threshold=sys.maxsize,formatter={'int': lambda x: hex(np.uint8(x)) if (x < 0) else hex(np.uint8(x)), } )
except TypeError:
np.set_printoptions(threshold=sys.maxsize)
s = repr(x.flatten()).replace("array([", "").replace("]", "").replace("[", "").replace(
",\n dtype=int32)", "").replace(", dtype=torch.int32)", "").replace(", dtype=int32)", "").replace(", dtype=int32)", "").replace(", dtype=uint32)", "").replace("tensor(", "")
return s
def create_h_file(vector, name):
tk = OrderedDict([])
tk['vector'] = print_test_vector(vector)
tk['dimension'] = vector.flatten().numpy().shape[0]
tk['vector_name'] = name
root = os.path.dirname(__file__)
tmpl = Template(filename=os.path.join(root, "vector_template.h"))
s_h = tmpl.render(**tk)
save_string = os.path.join(root, 'Inc/'+ name +'.h')
print("creating this file:", save_string)
with open(save_string, "w") as f:
f.write(s_h)
def borders(bits, signed = False):
low = -(2 ** (bits-1)) if signed else 0
high = 2 ** (bits-1) - 1 if signed else 2 ** bits - 1
return low, high
def clip(x, bits, signed=False):
low, high = borders(bits, signed)
x[x > high] = high
x[x < low] = low
return x
def create_input(channels, spatial_dim):
low, high = borders(8)
size = (1, channels, spatial_dim, spatial_dim)
dt = torch.int32
return torch.randint(low=0, high=100, size=size).to(dtype=dt)
def create_weight(channels):
low, high = borders(8)
size = (channels, channels , 1, 1)
dt = torch.int32
return torch.randint(low=0, high=5, size=size).to(dtype=dt)
def create_bias(channels):
size = (channels,1)
dt = torch.int32
return torch.randint(low=0, high=1, size=size).flatten().to(dtype=dt)
def create_layer( channels, spatial_dim, input=None, weight=None, batchnorm_params=None):
x = input if input is not None else create_input(channels, spatial_dim)
x_save = x.permute(0, 2, 3, 1).flatten()
create_h_file(x_save, "input")
w = weight if weight is not None else create_weight(channels)
create_h_file(w, "weights")
b = create_bias(channels)
y = F.conv2d(input=x, weight=w, bias=b, stride=1, padding=0, groups=1)
y = y >> 8
y = clip(y, 8)
y_save = y.permute(0, 2, 3, 1)
y_save = y_save.flatten()
create_h_file(y_save, "output")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--channels', type=int, help='Number of input and output channels', default=1)
parser.add_argument('--spatial_dimensions', type=int, help='Spatial dimension', default=1)
args = parser.parse_args()
create_layer(channels = args.channels, spatial_dim = args.spatial_dimensions)