forked from Spokhim/MouseBrainModelling
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Scripts for visuals of brain with BrainRender
- Loading branch information
Showing
2 changed files
with
182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
""" | ||
This tutorial shows how to create and render a brainrender scene with some brain regions | ||
""" | ||
import brainrender | ||
|
||
brainrender.SHADER_STYLE = "cartoon" | ||
from brainrender.scene import Scene | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pylab | ||
import matplotlib.pyplot as plt | ||
from scipy import stats | ||
from matplotlib.colors import ListedColormap | ||
from turbo_colormap import * | ||
import inspect | ||
import os | ||
import csv | ||
import time | ||
import sys | ||
import glob | ||
import pandas as pd | ||
from pprint import pprint | ||
import scipy.cluster.hierarchy as hierarchy | ||
#from tvb.simulator.lab import * | ||
#from tvb.simulator.plot.tools import * | ||
# Input Simulation Pipeline | ||
#from SimulationPipeline import * | ||
#from useful_fns import * | ||
|
||
from brainrender.colors import * | ||
|
||
# Add the whole thalamus in gray (think they meant red) | ||
#scene.add_brain_regions(["TH"], alpha=0.15) | ||
# Alpha is liek transparency. | ||
# Add VAL nucleus in wireframe style with the allen color | ||
#scene.add_brain_regions(["VAL"], use_original_color=True, wireframe=True) | ||
|
||
# Import the E and I densities | ||
df = pd.read_csv(r"C:\Users\Pok Him\Desktop\MouseBrainModelling\CortexDensitiesAlter.csv",delimiter=",") | ||
E_pop = df.excitatory.values | ||
I_pop = df.inhibitory.values | ||
E_mean = np.mean(E_pop) | ||
I_mean = np.mean(I_pop) | ||
|
||
# E_normalised is (when excluding region 7) -0.28 to 0.54 | ||
E_normalised = (E_pop-E_mean)/E_mean | ||
# I_normalised is (when excluding region 7) -0.45 to 1.44 | ||
I_normalised = (I_pop-I_mean)/I_mean | ||
|
||
""" | ||
Regime = "LCycle" | ||
G_value = 0.45 | ||
B_e_value = 2.8 | ||
File_start = r"D:\Simulations\2020_09_23\\" + Regime + "_G[[]" + str(G_value) + "[]]_b_e[[]" + str(B_e_value) + "[]]" | ||
TseriesFile = glob.glob(File_start+"*Tseries*_.csv")[0] | ||
df = np.genfromtxt(TseriesFile,delimiter="\t") | ||
bold_time = df[0] | ||
bold_data = df[1:] | ||
Region0 = bold_data[0] | ||
print(Region0) | ||
Value = Region0[0] | ||
print(Value) | ||
""" | ||
|
||
# https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html | ||
# Transparency | ||
alpha = 0.15 | ||
print(len(E_normalised)) | ||
|
||
# For just normal colouring of brain regions. | ||
# Create a scene_e | ||
scene_e = Scene( | ||
#screenshot_kwargs=dict(folder="Docs/Media/clean_screenshots"), | ||
title="Brain Regions", | ||
) | ||
|
||
for i in np.arange(len(E_normalised)): | ||
acronym = df.acronym[i] | ||
scene_e.add_brain_regions([acronym], alpha=0.5,use_original_color=True,wireframe=True) | ||
|
||
scene_e.render() | ||
|
||
''' | ||
Peace=colorMap(E_normalised, name=ListedColormap(turbo_colormap_data),vmin=min(E_normalised),vmax=max(E_normalised)) | ||
# Create a scene_e | ||
scene_e = Scene( | ||
#screenshot_kwargs=dict(folder="Docs/Media/clean_screenshots"), | ||
title="Excitatory Neuron Densities", | ||
) | ||
for i in np.arange(len(E_normalised)): | ||
colour_value = tuple(Peace[i]) | ||
acronym = df.acronym[i] | ||
scene_e.add_brain_regions([acronym], alpha=alpha,color=colour_value) | ||
scene_e.render() | ||
# Create a scene_i | ||
scene_i = Scene( | ||
#screenshot_kwargs=dict(folder="Docs/Media/clean_screenshots"), | ||
title="Inhibitory Neuron Densities", | ||
) | ||
# Transparency | ||
alpha = 0.15 | ||
print(len(I_normalised)) | ||
Inhib = colorMap(I_normalised, name=ListedColormap(turbo_colormap_data),vmin=min(I_normalised),vmax=max(I_normalised)) | ||
for i in np.arange(len(I_normalised)): | ||
colour_value = tuple(Inhib[i]) | ||
acronym = df.acronym[i] | ||
scene_i.add_brain_regions([acronym], alpha=alpha,color=colour_value) | ||
scene_i.render() | ||
# Create a scene | ||
scene = Scene( | ||
#screenshot_kwargs=dict(folder="Docs/Media/clean_screenshots"), | ||
title="Brain", | ||
) | ||
scene.render() | ||
''' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
""" | ||
This tutorial shows how download and rendered afferent mesoscale projection data | ||
using the AllenBrainAtlas (ABA) and Scene classes | ||
""" | ||
import brainrender | ||
|
||
brainrender.SHADER_STYLE = "cartoon" | ||
from brainrender.scene import Scene | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import pylab | ||
import matplotlib.pyplot as plt | ||
from scipy import stats | ||
from matplotlib.colors import ListedColormap | ||
from turbo_colormap import * | ||
import inspect | ||
import os | ||
import csv | ||
import time | ||
import sys | ||
import glob | ||
import pandas as pd | ||
from pprint import pprint | ||
import scipy.cluster.hierarchy as hierarchy | ||
#from tvb.simulator.lab import * | ||
#from tvb.simulator.plot.tools import * | ||
# Input Simulation Pipeline | ||
#from SimulationPipeline import * | ||
#from useful_fns import * | ||
|
||
from brainrender.colors import * | ||
|
||
# Create a scene | ||
scene = Scene(title="tractography") | ||
|
||
# Get data - using df just for the acronyms | ||
df = pd.read_csv(r"C:\Users\Pok Him\Desktop\MouseBrainModelling\CortexDensitiesAlter.csv",delimiter=",") | ||
|
||
name = df.acronym | ||
|
||
for i in np.arange(len(name)): | ||
acronym = name[i] | ||
|
||
# Get the center of mass of the region of interest | ||
p0 = scene.atlas.get_region_CenterOfMass(acronym) | ||
|
||
# Get projections to that point | ||
tract = scene.atlas.get_projection_tracts_to_target(p0=p0) | ||
|
||
# Add the brain regions and the projections to it | ||
#scene.add_brain_regions([acronym], alpha=0.4, use_original_color=True) | ||
scene.add_tractography(tract, color_by="target_region") | ||
|
||
scene.render() |