diff --git a/Snip Investigation.ipynb b/Snip Investigation.ipynb index 2e5163c..238c16e 100644 --- a/Snip Investigation.ipynb +++ b/Snip Investigation.ipynb @@ -10,11 +10,11 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": 3 + "version": "3.7.4-final" }, "orig_nbformat": 2, "kernelspec": { - "name": "python_defaultSpec_1596697988384", + "name": "python_defaultSpec_1599316647819", "display_name": "Python 3.7.4 64-bit ('tvb': venv)" } }, @@ -23,7 +23,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -54,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 7, "metadata": { "tags": [] }, @@ -62,19 +62,19 @@ { "output_type": "stream", "name": "stdout", - "text": "do-not-track\\LCycle_G[0.75]_MouseCortex_Tseries_20200805-031253_.csv\n" + "text": "do-not-track\\Old\\5_8_20\\LCycle_G[0.75]_MouseCortex_Tseries_20200805-031253_.csv\n" } ], "source": [ - "TseriesFile = glob.glob(\"do-not-track/LCycle_G[0.75*Tseries*_.csv\")[1]\n", - "ScorrFile = glob.glob(\"do-not-track/LCycle_G[0.75*SCorr*_.csv\")[1]\n", - "FCMFile = glob.glob(\"do-not-track/LCycle_G[0.75*FCM*_.csv\")[1]\n", + "TseriesFile = glob.glob(\"do-not-track\\\\Old\\\\5_8_20\\\\LCycle_G[0.75*Tseries*_.csv\")[1]\n", + "ScorrFile = glob.glob(\"do-not-track\\\\Old\\\\5_8_20\\\\LCycle_G[0.75*SCorr*_.csv\")[1]\n", + "FCMFile = glob.glob(\"do-not-track\\\\Old\\\\5_8_20\\\\LCycle_G[0.75*FCM*_.csv\")[1]\n", "print(TseriesFile)" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 8, "metadata": { "tags": [] }, @@ -181,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 19, "metadata": { "tags": [] }, @@ -195,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 10, "metadata": { "tags": [] }, @@ -203,7 +203,7 @@ { "output_type": "stream", "name": "stdout", - "text": "1\nSCFC = SpearmanrResult(correlation=0.39001655130012575, pvalue=1.2354801358988211e-49)\nFCFC = SpearmanrResult(correlation=0.6129895629303821, pvalue=5.7513349554580164e-70)\n10\nSCFC = SpearmanrResult(correlation=0.3900971456589239, pvalue=1.175791982143924e-49)\nFCFC = SpearmanrResult(correlation=0.613030062899865, pvalue=5.601068427039144e-70)\n100\nSCFC = SpearmanrResult(correlation=0.3900678437055767, pvalue=1.1971537493180992e-49)\nFCFC = SpearmanrResult(correlation=0.6132501520018289, pvalue=4.850195735306111e-70)\n1000\nSCFC = SpearmanrResult(correlation=0.39038286360334234, pvalue=9.863772978751427e-50)\nFCFC = SpearmanrResult(correlation=0.6144452057653352, pvalue=2.215477685245727e-70)\n10000\nSCFC = SpearmanrResult(correlation=0.3864635172803344, pvalue=1.0813446646225768e-48)\nFCFC = SpearmanrResult(correlation=0.6161577817065863, pvalue=7.165704114663534e-71)\n100000\nSCFC = SpearmanrResult(correlation=0.35912096383650566, pvalue=8.039788142483966e-42)\nFCFC = SpearmanrResult(correlation=0.5921138800646416, pvalue=2.9608885744609305e-64)\n" + "text": "1\nSCFC = SpearmanrResult(correlation=0.39001655130012575, pvalue=1.2354801358988211e-49)\nFCFC = SpearmanrResult(correlation=0.6129895629303821, pvalue=5.7513349554580164e-70)\n10\nSCFC = SpearmanrResult(correlation=0.3900971456589239, pvalue=1.175791982143924e-49)\nFCFC = SpearmanrResult(correlation=0.613030062899865, pvalue=5.601068427039144e-70)\n100\nSCFC = SpearmanrResult(correlation=0.3900678437055767, pvalue=1.1971537493180992e-49)\nFCFC = SpearmanrResult(correlation=0.6132501520018289, pvalue=4.850195735306111e-70)\n1000\nSCFC = SpearmanrResult(correlation=0.39038286360334234, pvalue=9.863772978751427e-50)\nFCFC = SpearmanrResult(correlation=0.6144452057653352, pvalue=2.215477685245727e-70)\n10000\nSCFC = SpearmanrResult(correlation=0.3864635172803344, pvalue=1.0813446646225768e-48)\nFCFC = SpearmanrResult(correlation=0.6161577817065863, pvalue=7.165704114663534e-71)\n100000\nSCFC = SpearmanrResult(correlation=0.35912096383650566, pvalue=8.039788142483966e-42)\nFCFC = SpearmanrResult(correlation=0.5921138800646416, pvalue=2.9608885744609305e-64)\n" } ], "source": [ @@ -275,13 +275,6 @@ "Until we snip 1e5 of data (which is like 5/6 of the data) and the usual, since we are taking the correlation of a shorter data length, our error bars indicate that the result we get is worse. \n", "This salso uggests, that the snip we have so far already allows the system to reach equilibrium if it ever does. " ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ] } \ No newline at end of file