-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtopo_nonlinear.py
388 lines (303 loc) · 14.5 KB
/
topo_nonlinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import time
import torch.optim.lr_scheduler
import torch
import torch.nn as nn
import numpy as np
from copy import copy
import scipy.linalg as slin
import torch.nn.functional as F
from topo_utils import create_Z,create_new_topo,threshold_W,find_idx_set_updated,set_sizes_nonlinear
import utils
class TopoMLP(nn.Module):
def __init__(self, dims):
super(TopoMLP, self).__init__()
assert len(dims) >= 2 and dims[-1] == 1, "Invalid dimension size or output dimension."
self.d = dims[0]
self.d1 = dims[1]
self.dims = dims
self.depth = len(dims)
self.layerlist = nn.ModuleList()
self._create_layerlist()
def _create_layerlist(self):
# Initialize the first layer separately due to its unique structure
layer0 = nn.ModuleList([nn.Linear(1, self.d1, bias=False) for _ in range(self.d * self.d)])
self.layerlist.append(layer0)
# For subsequent layers, use a more streamlined approach
for i in range(1, self.depth - 1):
layers = nn.ModuleList([nn.Linear(self.dims[i], self.dims[i + 1], bias=False) for _ in range(self.d)])
self.layerlist.append(layers)
def set_all_para_grad_True(self):
for param in self.parameters():
param.requires_grad = True
# set zero entry and set gradient non-updated for layer0!!!
def reset_by_topo(self, topo):
self.set_all_para_grad_True()
Z = create_Z(topo)
edge_abs_idx = np.argwhere(Z)
with torch.no_grad():
for idx in edge_abs_idx:
linear_idx = int(idx[0] + self.d * idx[1])
self.layerlist[0][linear_idx].weight.fill_(0)
self.layerlist[0][linear_idx].weight.requires_grad = False
def _forward_i(self, x, ith):
# Improved forward pass to reduce complexity
layer0_weights = torch.cat([self.layerlist[0][ll].weight for ll in range(self.d * ith, self.d * (ith + 1))],
dim=1).T
x = torch.mm(x, layer0_weights)
for ii in range(1, self.depth - 1):
x = F.sigmoid(x) # Consider using F.relu(x) for ReLU activation
x = self.layerlist[ii][ith](x)
return x
#
def forward(self, x): # [n,d] ->[n,d]
output = [self._forward_i(x, ii) for ii in range(self.d)]
return torch.cat(output, dim=1)
@torch.no_grad()
def freeze_grad_f_i(self,ith):
# freeze all the gradient of all the parameters related to f_i
for k in range(self.d):
self.layerlist[0][int(k+self.d*ith)].weight.requires_grad = False
for i in range(1, self.depth - 1):
self.layerlist[i][ith].weight.requires_grad = False
def update_nn_by_topo(self, topo, index):
# update the zero constraint and freeze corresponding gradient update
i, j = index
wherei, wherej = topo.index(i), topo.index(j)
topo0 = create_new_topo(copy(topo), index, opt=1)
self.reset_by_topo(topo = topo0)
freeze_idx = [oo for oo in range(self.d) if oo not in topo0[wherej:(wherei + 1)]]
if freeze_idx:
for ith in freeze_idx:
self.freeze_grad_f_i(ith)
def layer0_l1_reg(self):
return sum(torch.sum(torch.abs(vec.weight)) for vec in self.layerlist[0])
def l2_reg(self):
return sum(torch.sum(vec.weight ** 2) for layer in self.layerlist for vec in layer)
@torch.no_grad()
def get_gradient_F(self):
G_grad = torch.zeros(self.d ** 2, device='cpu')
for count, vec in enumerate(self.layer0):
G_grad[count] = torch.norm(vec.weight.grad, p=2)
G_grad = torch.reshape(G_grad, (self.d, self.d)).t()
return G_grad.numpy()
@torch.no_grad()
def layer0_to_adj(self):
W = torch.zeros((self.d * self.d), device='cpu')
for count, vec in enumerate(self.layerlist[0]):
# W[count] = torch.sqrt(torch.sum(vec.weight ** 2))
W[count] = torch.norm(vec.weight.data, p=2)
W = torch.reshape(W, (self.d, self.d)).t()
return W.numpy()
def _h(self, W):
I = np.eye(self.d)
s = 1
M = s * I - np.abs(W)
h = - np.linalg.slogdet(M)[1] + self.d * np.log(s)
G_h = slin.inv(M).T
return h, G_h
class TOPO_Nonlinear:
def __init__(self,
model,
X,
lambda1 = 0.01,
lambda2 = 0.01,
learning_rate = None,
num_iter = 50,
opti = 'LBFGS',
loss_type = 'l2',
lr_decay = False,
tol = 0.01,
dtype: torch.dtype = torch.double ):
self.model = model
self.X = X
self.n, self.d = X.shape
assert opti in ['LBFGS', 'Adam'], "Invalid optimizer"
if learning_rate == None:
if opti == 'LBFGS':
self.learning_rate_lbfgs = 1
else:
self.learning_rate_adam = 0.01
else:
self.learning_rate_lbfgs = learning_rate
self.learning_rate_adam = learning_rate
self.lambda1 = torch.tensor(lambda1)
self.lambda2 = torch.tensor(lambda2)
self.num_iter = num_iter
self.opti = opti
self.X_torch = torch.from_numpy(X)
self.loss_type = loss_type
self.lr_decay = lr_decay
self.tol = tol
def squared_loss(self, output, target):
return 0.5 / self.n * torch.sum((output - target) ** 2)
def log_loss(self, output, target):
return 0.5 * self.d * torch.log(1 / self.n * torch.sum((output - target) ** 2))
def train_iter(self, model, optimizer):
def closure():
optimizer.zero_grad()
X_hat = model(self.X_torch)
if self.loss_type == 'l2':
loss = self.squared_loss(X_hat, self.X_torch)
elif self.loss_type == 'logl2':
loss = self.log_loss(X_hat, self.X_torch)
l2_reg = 0.5 * self.lambda2 * model.l2_reg()
l1_reg = self.lambda1 * model.layer0_l1_reg()
total_loss = loss + l2_reg + l1_reg
total_loss.backward()
return total_loss
loss = optimizer.step(closure)
# if scheduler is not None:
# scheduler.step()
return loss.item()
def train(self, model):
loss_progress = []
if self.opti == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=self.learning_rate_adam,
betas = (.99, .999))
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.8)
if self.opti == 'LBFGS':
optimizer = torch.optim.LBFGS(model.parameters(), lr=self.learning_rate_lbfgs)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.95)
loss = self.train_iter(model=model, optimizer=optimizer)
loss_progress.append(loss)
for i in range(0,int(self.num_iter)+1):
loss = self.train_iter(model=model, optimizer=optimizer)
loss_progress.append(loss)
if self.opti == 'Adam' and (i+1)%50 ==0:
if abs((loss - loss_progress[-1])/max(loss_progress[-1],loss,1))<self.tol:
break
if self.opti == 'LBFGS' and (i+1)%8 ==0:
if abs((loss - loss_progress[-1])/max(loss_progress[-1],loss,1))<self.tol:
break
if self.lr_decay and self.opti == 'Adam' and (i+1)%500 == 0:
scheduler.step()
elif self.lr_decay and self.opti == 'LBFGS' and (i+1)%10 == 0:
scheduler.step()
return loss
@staticmethod
def copy_model(model, model_clone):
model_clone.load_state_dict(model.state_dict())
for param_target, (name_source, param_source) in zip(model_clone.parameters(), model.named_parameters()):
param_target.requires_grad = param_source.requires_grad
return model_clone
def fit(self,
topo: list,
no_large_search = -1,
size_small = -1,
size_large = -1,
verbose = False
):
vprint = print if verbose else lambda *a, **k: None
size_small, size_large, no_large_search = set_sizes_nonlinear(d, size_small, size_large, no_large_search)
print(f"Parameter is automatically set up.\n size_small: {size_small}, size_large: {size_large}, no_large_search: {no_large_search}")
iter_count = 0
large_space_used = 0
if not isinstance(topo, list):
raise TypeError
else:
self.topo = topo
self.Z = create_Z(self.topo)
# training model according to initial topological sort.
self.model.reset_by_topo(topo = self.topo)
self.loss = self.train(model = self.model)
vprint(f"The initial model, current loss {self.loss}")
self.W_adj = self.model.layer0_to_adj()
self.h, self.G_h = self.model._h(W=self.W_adj)
# let gradient of F play no role in update
self.G_loss = np.ones((self.d,self.d))
idx_set_small, idx_set_large = find_idx_set_updated(G_h=self.G_h, G_loss=self.G_loss, Z=self.Z, size_small=size_small,
size_large=size_large)
idx_set = list(idx_set_small)
while bool(idx_set):
idx_len = len(idx_set)
indicator_improve = False
model_clone = type(self.model)(self.model.dims)
for i in range(idx_len):
model_clone = self.copy_model(model = self.model,model_clone = model_clone)
topo_clone = create_new_topo(self.topo, idx_set[i], opt=1)
model_clone.update_nn_by_topo(topo = self.topo, index = idx_set[i])
loss_clone = self.train(model = model_clone)
vprint(f"working with topological sort:{topo_clone}, current loss {loss_clone}")
model_clone.reset_by_topo(topo = topo_clone)
if loss_clone<self.loss:
indicator_improve = True
# model_clone is successful, and we get copy of it
vprint(f"better loss found, topological sort: {topo_clone}, and loss: {loss_clone}")
self.model = self.copy_model(model = model_clone, model_clone = self.model)
self.topo = topo_clone
self.Z = create_Z(topo_clone)
self.loss = loss_clone
self.W_adj = self.model.layer0_to_adj()
self.h, self.G_h = self.model._h(W=self.W_adj)
break
if not indicator_improve:
if large_space_used < no_large_search:
indicator_improve_large = False
# print('++++++++++++++++++++++++++++++++++++++++++++')
vprint(f"start to use large search space for {large_space_used + 1} times")
# print('++++++++++++++++++++++++++++++++++++++++++++')
idx_set = list(set(idx_set_large) - set(idx_set_small))
idx_len = len(idx_set)
for i in range(idx_len):
model_clone = self.copy_model(model=self.model, model_clone=model_clone)
topo_clone = create_new_topo(self.topo, idx_set[i], opt=1)
model_clone.update_nn_by_topo(topo=self.topo, index=idx_set[i])
loss_clone = self.train(model=model_clone)
vprint(f"working with topological sort:{topo_clone}, current loss {loss_clone}")
model_clone.reset_by_topo(topo=topo_clone)
if loss_clone<self.loss:
indicator_improve_large = True
self.model = self.copy_model(model=model_clone, model_clone=self.model)
self.topo = topo_clone
self.Z = create_Z(topo_clone)
self.loss = loss_clone
self.W_adj = self.model.layer0_to_adj()
self.h, self.G_h = self.model._h(W=self.W_adj)
vprint(f"better loss found, topological sort: {topo_clone}, and loss: {loss_clone}")
break
if not indicator_improve_large:
vprint("Using larger search space, but we cannot find better loss")
break
large_space_used =large_space_used+ 1
else:
vprint("We reach the number of chances to search large space, it is {}".format(
no_large_search))
break
idx_set_small, idx_set_large = find_idx_set_updated(G_h=self.G_h, G_loss=self.G_loss, Z=self.Z,
size_small=size_small,
size_large=size_large)
idx_set = list(idx_set_small)
iter_count += 1
return self.W_adj, self.topo, self.loss, self.model
if __name__ == '__main__':
torch.set_default_dtype(torch.double)
np.set_printoptions(precision=3)
rd_int = 4321
utils.set_random_seed(rd_int)
torch.manual_seed(rd_int)
n, d, s0, graph_type, sem_type = 1000, 10, 10, 'ER', 'mlp'
B_true = utils.simulate_dag(d, s0, graph_type)
assert utils.is_dag(B_true)
X = utils.simulate_nonlinear_sem(B_true, n, sem_type)
topo_random = list(np.random.permutation(range(d)))
# set up the model
dims = [d, 40, 1]
learning_rate = None
num_iter = 1e4
lambda1 = 0.01,
lambda2 = 0.01,
loss_type = 'l2'
opti = 'LBFGS' # 'Adam'
lr_decay = True
verbose = True
Topo_mlp = TopoMLP(dims = dims)
Topo_nonlinear = TOPO_Nonlinear(X = X, model = Topo_mlp,num_iter = num_iter,
lambda1 = lambda1,lambda2 = lambda2,loss_type = loss_type,
opti = opti, lr_decay = lr_decay)
time_start = time.time()
W,topo,loss, model = Topo_nonlinear.fit(topo = topo_random,verbose= verbose)
time_end = time.time()
W_thres = threshold_W(W,threshold= 0.5)
acc = utils.count_accuracy(B_true, W_thres != 0)
print(acc)
print(f"running time is {time_end - time_start}")