-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.R
68 lines (65 loc) · 1.94 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Shiny App for visualization
# Loading the required colors and packages from the R subdirectory ####
source("R/Packages_Colors.R")
# Estimation results saved in the next
source("R/basics_estimation.R")
dashboardPage(
title = "Key Ingredients of Double Machine Learning",
skin = dashboard_skin,
dbHeader,
dashboardSidebar(
sidebarMenu(
menuItem("Basics of Double Machine Learning", tabName = "basics")
)
),
dashboardBody(
tags$head(tags$style(HTML(body_col))),
withMathJax(),
chooseSliderSkin(slider_skin, color = slider_color),
# Boxes need to be put in a row (or column)
tabItems(
tabItem(
tabName = "basics",
h2("Key Ingredients of Double Machine Learning"),
p("Simulated data example based on Chernozhukov et al. (2018)"),
fluidRow(
box(
title = "Key Ingredients of DoubleML",
checkboxInput(
inputId = "orth",
label = "Orthogonal Score",
value = FALSE
),
checkboxInput(
inputId = "samplesplit",
label = "Sample Splitting",
value = FALSE
),
selectInput(
inputId = "hq",
label = "High Quality ML",
choices = c("Tuned", "Underfitting", "Overfitting"),
selected = c("Underfitting")
),
width = 3
),
box(plotOutput("dens_ingrds", height = 450), widht = 9)
),
h2("The Use of Cross-Fitting"),
p("Simulated data example based on Chernozhukov et al. (2018)"),
fluidRow(
box(
title = "Cross-fitting and DoubleML",
checkboxInput(
inputId = "crossfit",
label = "Cross-fitting",
value = FALSE
),
width = 3
),
box(plotOutput("dens_cf", height = 450), widht = 9)
)
)
)
)
)