-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasource.py
executable file
·295 lines (212 loc) · 10.7 KB
/
datasource.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import random
import torch
import torchvision as tv
import torchvision.transforms as tf
from sklearn.utils import shuffle
from matplotlib import pyplot as plt
# Given each user euqal number of samples if possible. If not, the last user
# gets whatever is left after other users had their shares
def iid_split(num_clients,
train_data,
batch_size, test_data):
all_train_idx = np.arange(train_data.data.shape[0])
sample_train_idx = np.array_split(all_train_idx, num_clients)
all_test_idx = np.arange(test_data.data.shape[0])
sample_test_idx = np.array_split(all_test_idx, num_clients)
user_train_loaders = []
user_test_loaders = []
for idx in sample_train_idx:
user_train_loaders.append(torch.utils.data.DataLoader(train_data,
sampler=torch.utils.data.SubsetRandomSampler(idx),
batch_size=batch_size))
for idx in sample_test_idx:
user_test_loaders.append(torch.utils.data.DataLoader(test_data,
sampler=torch.utils.data.SubsetRandomSampler(idx),
batch_size=batch_size))
return user_train_loaders, user_test_loaders
# Sort the labels before splitting the data to each user
def non_iid_split(num_clients, num_train_samples_perclass,
train_data,
batch_size, test_data, num_validation_samples_perclass=10, num_test_samples_perclass=890):
data_size = train_data.data.shape[0]
#Test data size
data_size_test = test_data.data.shape[0]
# Making sure that each client gets at least 2 samples
assert data_size > num_clients * 2
# Sorting the data by their class labels
label_idx_pairs = [ (i, train_data.targets[i]) for i in range(data_size)]
label_idx_pairs = sorted(label_idx_pairs, key=lambda pair : pair[1])
sorted_idx = [idx for idx, label in label_idx_pairs]
# Sorting the data by their class labels TEST DATA
label_idx_pairs_test = [ (i, test_data.targets[i]) for i in range(data_size_test)]
label_idx_pairs_test = sorted(label_idx_pairs_test, key=lambda pair : pair[1])
sorted_idx_test = [idx for idx, label in label_idx_pairs_test]
train_digit_list = [[] for i in range(10)]
test_digit_list = [[] for i in range(10)]
for i in range(len(sorted_idx)):
train_digit_list[train_data.targets[i]].append(i)
for i in range(len(sorted_idx_test)):
test_digit_list[test_data.targets[i]].append(i)
# # Split the class labels into 2 * num_clients chunks. If the data cannot
# # be equally divided, the last chunk will have less data than the rest.
# sample_bin_idx = np.array_split(sorted_idx, num_clients * 2)
# np.random.seed(1)
# sample_bin_idx = np.random.permutation(sample_bin_idx)
# num_bins = len(sample_bin_idx)
# #For test data
# sample_bin_idx_test = np.array_split(sorted_idx_test, num_clients * 2)
# np.random.seed(1)
# sample_bin_idx_test = np.random.permutation(sample_bin_idx_test)
#Training data loaders
train_loaders = []
#Val data loader
val_loaders = []
#Test data loaders
test_loaders = []
for i in range(0, num_clients):
digits = np.random.choice(range(10), 2, replace = False)
digit1, digit2 = digits[0], digits[1]
cur_train_idx = []
cur_val_idx = []
cur_test_idx = []
cur_train_idx = np.random.choice(train_digit_list[digit1], num_train_samples_perclass + num_validation_samples_perclass, replace =False)
cur_test_idx = np.random.choice(test_digit_list[digit1], num_test_samples_perclass, replace = False)
cur_train_idx = np.append(cur_train_idx, np.random.choice(train_digit_list[digit2], num_train_samples_perclass + num_validation_samples_perclass, replace =False))
cur_train_idx = shuffle(cur_train_idx)
cur_test_idx = np.append(cur_test_idx, np.random.choice(test_digit_list[digit2], num_test_samples_perclass, replace = False))
cur_test_idx = shuffle(cur_test_idx)
cur_val_idx = cur_train_idx[:2*num_validation_samples_perclass]
cur_train_idx = cur_train_idx[2*num_validation_samples_perclass:]
# client_data_idx = sample_bin_idx[i]
# client_test_data_idx = sample_bin_idx_test[i]
# if i + 1 < num_bins:
# client_data_idx = np.append(client_data_idx, sample_bin_idx[i+1])
# client_test_data_idx = np.append(client_test_data_idx, sample_bin_idx_test[i+1])
#Trainning data
cur_sampler = torch.utils.data.BatchSampler(torch.utils.data.SubsetRandomSampler(cur_train_idx),
batch_size,
drop_last=False)
cur_loader = torch.utils.data.DataLoader(train_data,
batch_sampler=cur_sampler)
train_loaders.append(cur_loader)
#Val data
cur_sampler_val = torch.utils.data.BatchSampler(torch.utils.data.SubsetRandomSampler(cur_val_idx),
batch_size,
drop_last=False)
cur_loader_val = torch.utils.data.DataLoader(train_data,
batch_sampler=cur_sampler)
val_loaders.append(cur_loader_val)
#Test data
cur_sampler_test = torch.utils.data.BatchSampler(torch.utils.data.SubsetRandomSampler(cur_test_idx),
batch_size,
drop_last=False)
cur_loader_test = torch.utils.data.DataLoader(test_data,
batch_sampler=cur_sampler_test)
test_loaders.append(cur_loader_test)
return train_loaders, val_loaders, test_loaders
def non_iid_unequal_split(num_clients,
train_data,
batch_size,
min_size,
max_size):
return
def get_data(num_clients, dataset_name,
n_class, num_train_samples_perclass, mode="iid",
batch_size=4,
min_shard=1,
max_shard=30, num_validation_samples_perclass=10, num_test_samples_perclass=890,rate_unbalance=1.0):
train_data, test_data = [], []
transform1 = tf.Compose([
tf.ToTensor(),
tf.Normalize((0.1307,), (0.3081,))])
transform2 = tf.Compose([
tf.ToTensor(),
tf.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# Downloading data based on inputs. If the data is already downloaded,
# it won't be download twice
if dataset_name == "cifar10":
train_data = tv.datasets.CIFAR10(root="./data",
train=True,
download=True,
transform=transform2)
test_data = tv.datasets.CIFAR10(root="./data",
train=False,
download=True,
transform=transform2)
elif dataset_name == "mnist":
train_data = tv.datasets.MNIST(root="./data",
train=True,
download=True,
transform=transform1)
test_data = tv.datasets.MNIST(root="./data",
train=False,
download=True,
transform=transform1)
elif dataset_name == "cifar100":
train_data = tv.datasets.CIFAR100(root="./data",
train=True,
download=True,
transform=transform)
test_data = tv.datasets.CIFAR100(root="./data",
train=False,
download=True,
transform=transform)
else:
print("You did not enter the name of a supported dataset")
print("Supported datasets: {}, {}".format('"cifar10"', '"mnist"'))
exit()
global_test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size)
if mode == "iid":
return iid_split(num_clients,
train_data,
batch_size, test_data), global_test_loader
elif mode == "non-iid":
return non_iid_split(num_clients = num_clients,
num_train_samples_perclass= num_train_samples_perclass, num_validation_samples_perclass = num_validation_samples_perclass, num_test_samples_perclass= num_test_samples_perclass, train_data =train_data,
batch_size = batch_size, test_data = test_data), global_test_loader
elif mode == "non-iid-unequal":
return non_iid_unequal_split(num_clients,
train_data,
batch_size,
min_shard,
max_shard), global_test_loader
else:
print("You did not enter a supported data splitting scheme")
print("Supported data splitting schemes: {}, {}, {}".format('"iid"', '"non-iid"', '"non-iid-unequal"'))
exit()
return 0
if __name__ == "__main__":
#print("Load MNIST 10")
#user_loaders, test_loader = get_data(10, "mnist")
#assert len(user_loaders) == 10
# l = [[1,2,3,4,5], [2,2], [2,3,4]]
# print(np.random.permutation(l))
print("Load CIAFR10 non-iid")
users_data, global_test_loader = get_data(num_clients = 400, dataset_name= "cifar10", n_class = 2, num_train_samples_perclass = 20, mode="non-iid", batch_size=10)
train_loaders, val_loaders, test_loaders = users_data
count = 0
print("training data")
means = torch.Tensor([0.4914, 0.4822, 0.4465])
stds = torch.Tensor([0.2023, 0.1994, 0.2010])
for data, label in train_loaders[0]:
if (count==0):
print(data[0])
plt.imshow(data[0].permute(1,2,0)*stds + means, interpolation='bicubic')
plt.show()
print(label)
count += 1
print(count)
count = 0
print("validation data")
for data, label in val_loaders[0]:
print(label)
count += 1
print(count)
count = 0
print("testing data")
for data, label in test_loaders[0]:
print(label)
count += 1
print(count)