-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
208 lines (184 loc) · 7.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""""*******************************************************
* Copyright (C) 2020 {Dong Chen} <{chendon9@msu.edu}>
* main function.
"""
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from DER_fn import DER_controller
import argparse
import os
from datetime import datetime
def parse_args():
default_config_dir = 'configs'
plot_dir = 'results/'
parser = argparse.ArgumentParser()
parser.add_argument('--config_dir', type=str, required=False,
default=default_config_dir, help="experiment config dir")
parser.add_argument('--num_DER', type=int, required=False,
default=4, help="number of DERs")
parser.add_argument('--mode', type=str, required=False,
default='Vnom', help="voltage control mode", choices=['Vnom', 'Vcritc'])
parser.add_argument('--critic_bus_id', type=int, required=False,
default=2, help="critical bus id")
parser.add_argument('--plot_dir', type=str, required=False,
default=plot_dir, help="directory for storing results")
parser.add_argument('--plot_unit_voltage', type=bool, required=False,
default=True, help="plot per unit voltage or not")
args = parser.parse_args()
return args
def main(args, DER_num, lines_num, loads_num, DER_controller, sampling_time = 0.1, disturbance=True):
# time points
start = datetime.now()
x = []
t_pre = np.linspace(0, sampling_time * 10, 11)
t = np.linspace(0, sampling_time * 30, 31)
if args.mode == 'Vnom':
x_pre = odeint(DER_controller.VSI_VFctrl_func, x0, t_pre, atol=1e-10, rtol=1e-11, mxstep=5000, printmessg=True)
else:
x_pre = odeint(DER_controller.VSI_VFctrl_func, x_critic, t_pre, atol=1e-10, rtol=1e-11, mxstep=5000, printmessg=True)
x1 = (x_pre[-1]).tolist()
x.append(x_pre.tolist())
x = x[0]
for step in range(20):
if disturbance:
# random disturbance
DER_controller.disturbance_R = np.random.rand(DER_num) * 0.1 - 0.05
DER_controller.disturbance_L = np.random.rand(DER_num) * 0.1 - 0.05
else:
DER_controller.disturbance_R = np.random.rand(DER_num) * 0
DER_controller.disturbance_L = np.random.rand(DER_num) * 0
steps = 11 + step
if args.mode == 'Vnom':
x_af = odeint(DER_controller.VSI_VFctrl_func, x1, np.array([(steps - 1) * sampling_time, steps * sampling_time]), atol=1e-10, rtol=1e-11, mxstep=5000, printmessg=True)
x = x + [x_af[-1].tolist()]
x1 = (x_af[-1]).tolist()
else:
x_af = odeint(DER_controller.VSI_VFctrl_func, x1, np.array([(steps - 1) * sampling_time, steps * sampling_time]), atol=1e-10, rtol=1e-11, mxstep=5000, printmessg=True)
x = x + [x_af[-1].tolist()]
x1 = (x_af[-1]).tolist()
print(datetime.now() - start)
# control output
vbus = []
PDG = []
QDG = []
w = []
# control input
wn = []
vn = []
x = np.array(x)
reward = 0
# active/reactive power ratio
for j in range(DER_num):
PDG.append((mp[j] * (np.multiply(x[:, 13 * j + 10], x[:, 13 * j + 12]) + np.multiply(x[:, 13 * j + 11],
x[:,
13 * j + 13]))).tolist())
QDG.append((nq[j] * (np.multiply(-x[:, 13 * j + 10], x[:, 13 * j + 13]) + np.multiply(x[:, 13 * j + 11],
x[:,
13 * j + 12]))).tolist())
# frequency
w.append(
((x[:, DER_num * 13 + lines_num * 2 + loads_num * 2 + j + 1] - mp[j] * x[:, 13 * j + 2]) / (
2 * pi)).tolist())
# voltage of buses
if args.plot_unit_voltage is True:
vbus.append((np.sqrt(x[:, 13 * j + 10] ** 2 + x[:, 13 * j + 11] ** 2) / Vnom).tolist())
else:
vbus.append((np.sqrt(x[:, 13 * j + 10] ** 2 + x[:, 13 * j + 11] ** 2)).tolist())
# control input
wn.append((x[:, DER_num * 13 + lines_num * 2 + loads_num * 2 + j + 1]).tolist())
vn.append((x[:, DER_num * 14 + lines_num * 2 + loads_num * 2 + j + 1]).tolist())
for q in range(len(vbus[j][11:])):
vi = vbus[j][11:][q]
if vi >= 0.95 and vi <= 1.05:
reward += 0.05 - np.abs(1 - vi)
elif vi <= 0.8 or vi >= 1.25:
reward += -20
else:
reward += - np.abs(1 - vi)
print(reward)
# # subplot: https://matplotlib.org/3.1.3/gallery/pyplots/pyplot_scales.html#sphx-glr-gallery-pyplots-pyplot-scales-py
plt.figure()
plt.subplot(221)
for a in range(DER_num):
plt.plot(t, w[a], label='DER_id %s' % (a + 1))
# # plt.xlim(0, 6)
plt.xlabel("time")
# # plt.legend()
plt.title("DER Frequency")
plt.subplot(222)
plt.xlabel("time")
plt.ylabel("ratio")
plt.title("Active power ratio")
for b in range(DER_num):
plt.plot(t, PDG[b], label='DER_id %s' % (b + 1))
# # plt.legend()
# # plt.xlim(0, 6)
plt.subplot(223)
plt.xlabel("time")
plt.ylabel("voltage")
plt.title("DER Voltage")
for c in range(DER_num):
plt.plot(t, vbus[c], label='DER_id %s' % (c + 1))
# # plt.legend()
# # plt.xlim(0, 6)
plt.subplot(224)
plt.xlabel("time")
plt.ylabel("ratio")
plt.title("Reactive Power Ratio")
for d in range(DER_num):
plt.plot(t, QDG[d], label='DER_id %s' % (d + 1))
# # plt.legend()
# # plt.xlim(0, 6)
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)
plt.show()
# plt.savefig(args.plot_dir + 'DER_' + str(args.num_DER) + '.png')
plt.xlabel("time")
plt.ylabel("voltage")
plt.title("DER Voltage")
for c in range(len(vbus)):
plt.plot(t, vbus[c], label='DER_id %s' % (c + 1))
# # plt.legend()
# # plt.xlim(0, 6)
plt.show()
plt.xlabel("time")
plt.ylabel("Input wn")
plt.title("Secondary frequency Control Input")
for e in range(DER_num):
plt.plot(t, wn[e], label='DER_id %s' % (e + 1))
# # plt.legend()
# # plt.xlim(0, 6)
plt.show()
#
plt.xlabel("time")
plt.ylabel("Input vn")
plt.title("Secondary Voltage Control Input")
for f in range(DER_num):
plt.plot(t, vn[f], label='DER_id %s' % (f + 1))
# # plt.legend()
# # plt.xlim(0, 6)
plt.show()
return reward
if __name__ == '__main__':
args = parse_args()
os.makedirs(args.plot_dir, exist_ok=True)
num_test = 1
random_seed = 0
reward_list = []
if args.num_DER == 4:
from configs.parameters_4 import *
else:
from configs.parameters_20 import *
DER_num = len(BUSES)
lines_num = sum(sum(np.array(BUSES))) // 2
loads_num = sum(BUS_LOAD)
sampling_time = 0.1
for i in range(num_test):
np.random.seed(random_seed)
random_seed += 1
der_controller = DER_controller(args.mode, args.critic_bus_id, DER_num, lines_num, loads_num, DER_dic, BUSES,
BUS_LOAD, rline, Lline, a_ctrl, AP,
G, Vnom, wref, mp1, rN, wc, F, wb, Lf, Cf, rLf, Lc, rLc, kp, ki, sampling_time=sampling_time)
reward = main(args, DER_num, lines_num, loads_num, der_controller, sampling_time, disturbance=False) # False True
reward_list.append(reward)
print(np.mean(reward_list))