-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalid_models.py
427 lines (339 loc) · 17.1 KB
/
valid_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os
import gc
from functools import partial
from tqdm import tqdm
import cv2
import numpy as np
import logging
import albumentations as A
from albumentations.pytorch import ToTensorV2
from albumentations import ImageOnlyTransform
import segmentation_models_pytorch as smp
import torch
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler
from torch.cuda.amp import autocast
from torch.optim import Adam, SGD, AdamW
from torchvision.transforms.functional import hflip, vflip, rotate
from utils.dataset_v import VesuviusDataset
from utils.image_loaders import get_train_valid_dataset_4_folds, read_images_mask_middle_layers
from utils.set_seed import set_seed
from utils.metrics import calc_cv
from torchvision.transforms.functional import hflip, vflip, rotate
from utils.triple_mit_unet_uneven import VesuviusModelTripleMIT_Uneven
from utils.gradual_warmup_scheduler_v2 import get_scheduler, scheduler_step
from utils.manet_meanpooled import MAnetMeanPooled
from utils.pooled_unet_smp import UnetMeanPooled
from torch.utils.tensorboard import SummaryWriter
class CFG:
device = 'cuda:1'
PATH_TO_DS = '../data_4_folds'
PATH_TO_SAVE_INF = './inference'
valid_batch_size = 1
num_workers = 4
criterion = smp.losses.SoftBCEWithLogitsLoss()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def valid_fn(valid_loader, model, criterion, img_shape, device, _rotate=False):
mask_pred = np.zeros(img_shape)
mask_count = np.zeros(img_shape)
model = model.eval()
losses = AverageMeter()
for step, (images, labels, valid_xyxy) in tqdm(enumerate(valid_loader), total=len(valid_loader)):
images = images.to(device)
labels = labels.to(device)
batch_size = labels.size(0)
with torch.no_grad():
y_preds = model(images)
loss = criterion(y_preds, labels)
losses.update(loss.item(), batch_size)
y_preds = torch.sigmoid(y_preds).to('cpu').numpy()
for i in range(batch_size):
x1, y1, x2, y2 = valid_xyxy[i, 0].item(), valid_xyxy[i, 1].item(), valid_xyxy[i, 2].item(), valid_xyxy[i, 3].item()
mask_pred[y1:y2, x1:x2] += y_preds[i].squeeze(0)
mask_count[y1:y2, x1:x2] += 1
print(f'mask count min {mask_count.min()}')
mask_pred /= mask_count
return losses.avg, mask_pred
def criterion(y_pred, y_true):
return CFG.criterion(y_pred, y_true)
def valid_on_fold(valid_img, model, transformations, in_chans, tile_size, stride, rotate=False):
read_images_mask = partial(read_images_mask_middle_layers, PATH_TO_DS = CFG.PATH_TO_DS, chans_idxs=in_chans, tile_size=tile_size)
_, _, valid_images, valid_masks, valid_xyxys = get_train_valid_dataset_4_folds(valid_img, read_images_mask, tile_size, stride, stride)
valid_dataset = VesuviusDataset(valid_images, valid_masks, valid_xyxys, transformations)
valid_dataloader = DataLoader(valid_dataset,
batch_size=CFG.valid_batch_size,
shuffle=False,
num_workers=CFG.num_workers, pin_memory=True, drop_last=False)
valid_mask_gt = cv2.imread(os.path.join(CFG.PATH_TO_DS, f"train/{valid_img}/inklabels.png"), 0)
valid_mask_gt_shape = valid_mask_gt.shape
valid_mask_gt = valid_mask_gt / 255
pad0 = (tile_size - valid_mask_gt.shape[0] % tile_size)
pad1 = (tile_size - valid_mask_gt.shape[1] % tile_size)
valid_mask_gt = np.pad(valid_mask_gt, [(0, pad0), (0, pad1)], constant_values=0)
model.to(CFG.device)
avg_val_loss, mask_pred = valid_fn(
valid_dataloader, model, criterion, valid_mask_gt.shape, CFG.device, _rotate=rotate)
best_dice, best_th, ths = calc_cv(valid_mask_gt, mask_pred)
print(f"Avg val loss - {avg_val_loss}")
print("THs", ths)
print(f"best_th - {best_th}")
print(f'best dice - {best_dice}')
del model
gc.collect()
torch.cuda.empty_cache()
return best_th, best_dice, mask_pred
DATASET_PATH = '/home/dmitry/Documents/KaggleCompetitions/Vesuvius/'
model_paths = [#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_1_epoch_12_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_1_epoch_21_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_2_epoch_10_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_2_epoch_21_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_3_epoch_12_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_3_epoch_19_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_4_epoch_13_model.pth',
#'models/mit_mean_pooling_32_ch_256/Dataset/mit_mean_pooling_32_ch_256_fold_4_epoch_13_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_1_epoch_12_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_1_epoch_23_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_2_epoch_16_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_2_epoch_25_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_3_epoch_22_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_3_epoch_31_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_4_epoch_20_model.pth',
#'models/mit_b1_manet_32_ch/Dataset/mit_b1_manet_32_ch_fold_4_epoch_30_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_1_epoch_8_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_1_epoch_30_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_2_epoch_13_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_2_epoch_20_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_3_epoch_13_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_3_epoch_16_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_4_epoch_13_model.pth',
'models/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven/Dataset/triple_mit_b1_b2_9_slices_from_the_middle_default_augmentations_4_folds_uneven_fold_4_epoch_20_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_1_epoch_10_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_1_epoch_21_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_2_epoch_17_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_2_epoch_22_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_3_epoch_25_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_3_epoch_30_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_4_epoch_15_model.pth',
#'models/mit_b1_max_pooling_32/Dataset/mit_b1_max_pooling_32_fold_4_epoch_33_model.pth'
]
folds = [#1, 1, 2, 2, 3, 3, 4, 4,
#1, 1, 2, 2, 3, 3, 4, 4,
1, 1, 2, 2, 3, 3, 4, 4,
#1, 1, 2, 2, 3, 3, 4, 4
]
model_names = [#'mit_b2_mean_pooling_1_12',
#'mit_b2_mean_pooling_1_21',
#'mit_b2_mean_pooling_2_10',
#'mit_b2_mean_pooling_2_21',
#'mit_b2_mean_pooling_3_12',
#'mit_b2_mean_pooling_3_19',
#'mit_b2_mean_pooling_4_13',
#'mit_b2_mean_pooling_4_13_',
#'mit_b2_manet_mean_pooling_1_12',
#'mit_b2_manet_mean_pooling_1_23',
#'mit_b2_manet_mean_pooling_2_16',
#'mit_b2_manet_mean_pooling_2_25',
#'mit_b2_manet_mean_pooling_3_22',
#'mit_b2_manet_mean_pooling_3_31',
#'mit_b2_manet_mean_pooling_4_20',
#'mit_b2_manet_mean_pooling_4_30',
'triple_mit_b1_b2_1_8',
'triple_mit_b1_b2_1_30',
'triple_mit_b1_b2_2_13',
'triple_mit_b1_b2_2_20',
'triple_mit_b1_b2_3_13',
'triple_mit_b1_b2_3_16',
'triple_mit_b1_b2_4_13',
'triple_mit_b1_b2_4_20',
#'mit_b1_max_pooling_1_10',
#'mit_b1_max_pooling_1_21',
#'mit_b1_max_pooling_2_17',
#'mit_b1_max_pooling_2_22',
#'mit_b1_max_pooling_3_25',
#'mit_b1_max_pooling_3_30',
#'mit_b1_max_pooling_4_15',
#'mit_b1_max_pooling_4_33'
]
in_chans = [#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
#[16 + i for i in range(32)],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
[28, 29, 30, 31, 32, 33, 34, 35, 36],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)],
#[i for i in range(20, 38)]
]
tile_sizes = [#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
448,
448,
448,
448,
448,
448,
448,
448,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
#256,
]
stride_sizes = [#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
224,
224,
224,
224,
224,
224,
224,
224,
224,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
#128,
]
def load_model(model_path, model_name, in_chans):
best_th, best_dice = None, None
model_state_dict = torch.load(model_path, map_location=torch.device('cpu'))
if 'mit_b1_max_pooling' in model_name:
model = UnetMeanPooled(encoder_name = 'mit_b1', encoder_weights=None, pooling_type='max', crop_stride=2)
model.load_state_dict(model_state_dict['model'])
best_th = model_state_dict['best_th']
best_dice = model_state_dict['best_dice']
transformations = A.Compose([A.Normalize(
mean= [0] * len(in_chans),
std= [1] * len(in_chans)
),
ToTensorV2(transpose_mask=True)])
elif 'mit_b2_mean_pooling' in model_name:
model = UnetMeanPooled(encoder_name='mit_b2', encoder_weights=None, pooling_type='mean', crop_stride=2, decoder_attention_type='scse')
model.load_state_dict(model_state_dict['model'])
transformations = A.Compose([A.Normalize(
mean= [0] * len(in_chans),
std= [1] * len(in_chans)
),
ToTensorV2(transpose_mask=True)])
best_th = model_state_dict['best_th']
best_dice = model_state_dict['best_dice']
elif 'triple_mit' in model_name:
model = VesuviusModelTripleMIT_Uneven(backbone_small='mit_b1', backbone_name='mit_b2')
model.load_state_dict(model_state_dict['model'])
transformations = A.Compose([A.Normalize(
mean= [0] * len(in_chans),
std= [1] * len(in_chans)
),
ToTensorV2(transpose_mask=True)])
best_th = model_state_dict['best_th']
best_dice = model_state_dict['best_dice']
elif 'mit_b2_manet' in model_name:
model = MAnetMeanPooled(encoder_name='mit_b2')
model.load_state_dict(model_state_dict['model'])
transformations = A.Compose([A.Normalize(
mean= [0] * len(in_chans),
std= [1] * len(in_chans)
),
ToTensorV2(transpose_mask=True)])
best_th = model_state_dict['best_th']
best_dice = model_state_dict['best_dice']
del model_state_dict
gc.collect()
return model, transformations, best_th, best_dice
if __name__ == "__main__":
logging.basicConfig(filename='./valid_models.log',
filemode='a',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
logging.info("Valid Models logging")
logger = logging.getLogger('ValidModels')
for model_path, fold, model_name, in_chans, tile_size, stride_size in zip(model_paths, folds, model_names, in_chans, tile_sizes, stride_sizes):
model, transformations, best_th_, best_dice_ = load_model(os.path.join(DATASET_PATH, model_path), model_name, in_chans)
model.to(CFG.device)
best_th, best_dice, mask = valid_on_fold(fold, model, transformations, in_chans, tile_size, stride_size, rotate=False)
print(best_th, best_th_, best_dice, best_dice_)
logger.info(f'{model_name} - best_th : {best_th}, best_dice : {best_dice}, best_th_old : {best_th_}, best_dice_old : {best_dice_}')
np.save(os.path.join(CFG.PATH_TO_SAVE_INF, f'{model_name}_mask.npy'), mask)
del model
gc.collect()
torch.cuda.empty_cache()