-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09_train_from_your_own_data.py
440 lines (307 loc) · 13.6 KB
/
09_train_from_your_own_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import time
from datetime import timedelta
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Functions and classes for loading and using the Inception model.
import Lib.inception as inception
# We use Pretty Tensor to define the new classifier.
import prettytensor as pt
import Lib.knifey as knifey
from Lib.knifey import num_classes
knifey.maybe_download_and_extract()
dataset = knifey.load()
data_dir = knifey.data_dir
class_names = dataset.class_names
print(class_names)
image_paths_train, cls_train, labels_train = dataset.get_training_set()
image_paths_test, cls_test, labels_test = dataset.get_test_set()
# print(image_paths_train[0])
# print(image_paths_test[0])
print("Size of:")
print("- Training-set:\t\t{}".format(len(image_paths_train)))
print("- Test-set:\t\t{}".format(len(image_paths_test)))
def plot_images(images, cls_true, cls_pred=None, smooth=True):
assert len(images) == len(cls_true)
# Create figure with sub-plots.
fig, axes = plt.subplots(3, 3)
# Adjust vertical spacing.
if cls_pred is None:
hspace = 0.3
else:
hspace = 0.6
fig.subplots_adjust(hspace=hspace, wspace=0.3)
# Interpolation type.
if smooth:
interpolation = 'spline16'
else:
interpolation = 'nearest'
for i, ax in enumerate(axes.flat):
# There may be less than 9 images, ensure it doesn't crash.
if i < len(images):
# Plot image.
ax.imshow(images[i],
interpolation=interpolation)
# Name of the true class.
cls_true_name = class_names[cls_true[i]]
# Show true and predicted classes.
if cls_pred is None:
xlabel = "True: {0}".format(cls_true_name)
else:
# Name of the predicted class.
cls_pred_name = class_names[cls_pred[i]]
xlabel = "True: {0}\nPred: {1}".format(cls_true_name, cls_pred_name)
# Show the classes as the label on the x-axis.
ax.set_xlabel(xlabel)
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()
from matplotlib.image import imread
def load_images(image_paths):
# Load the images from disk.
images = [imread(path) for path in image_paths]
# Convert to a numpy array and return it.
return np.asarray(images)
# Load the first images from the test-set.
images = load_images(image_paths=image_paths_test[0:9])
# Get the true classes for those images.
cls_true = cls_test[0:9]
# Plot the images and labels using our helper-function above.
plot_images(images=images, cls_true=cls_true, smooth=True)
inception.maybe_download()
model = inception.Inception()
from Lib.inception import transfer_values_cache
file_path_cache_train = os.path.join(data_dir, 'inception-knifey-train.pkl')
file_path_cache_test = os.path.join(data_dir, 'inception-knifey-test.pkl')
print("Processing Inception transfer-values for training-images ...")
# If transfer-values have already been calculated then reload them,
# otherwise calculate them and save them to a cache-file.
transfer_values_train = transfer_values_cache(cache_path=file_path_cache_train, image_paths=image_paths_train, model=model)
print("Processing Inception transfer-values for test-images ...")
# If transfer-values have already been calculated then reload them,
# otherwise calculate them and save them to a cache-file.
transfer_values_test = transfer_values_cache(cache_path=file_path_cache_test, image_paths=image_paths_test, model=model)
def plot_transfer_values(i):
print("Input image:")
# Plot the i'th image from the test-set.
image = imread(image_paths_test[i])
plt.imshow(image, interpolation='spline16')
plt.show()
print("Transfer-values for the image using Inception model:")
# Transform the transfer-values into an image.
img = transfer_values_test[i]
img = img.reshape((32, 64))
# Plot the image for the transfer-values.
plt.imshow(img, interpolation='nearest', cmap='Reds')
plt.show()
plot_transfer_values(i=100)
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
# transfer_values = transfer_values_train[0:3000]
transfer_values = transfer_values_train
cls = cls_train
transfer_values_reduced = pca.fit_transform(transfer_values)
def plot_scatter(values, cls):
# Create a color-map with a different color for each class.
import matplotlib.cm as cm
cmap = cm.rainbow(np.linspace(0.0, 1.0, num_classes))
# Create an index with a random permutation to make a better plot.
idx = np.random.permutation(len(values))
# Get the color for each sample.
colors = cmap[cls[idx]]
# Extract the x- and y-values.
x = values[idx, 0]
y = values[idx, 1]
# Plot it.
plt.scatter(x, y, color=colors, alpha=0.5)
plt.show()
plot_scatter(transfer_values_reduced, cls=cls)
from sklearn.manifold import TSNE
pca = PCA(n_components=50)
transfer_values_50d = pca.fit_transform(transfer_values)
tsne = TSNE(n_components=2)
transfer_values_reduced = tsne.fit_transform(transfer_values_50d)
plot_scatter(transfer_values_reduced, cls=cls)
transfer_len = model.transfer_len
x = tf.placeholder(tf.float32, shape=[None, transfer_len], name='x')
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
y_true_cls = tf.argmax(y_true, dimension=1)
# Wrap the transfer-values as a Pretty Tensor object.
x_pretty = pt.wrap(x)
with pt.defaults_scope(activation_fn=tf.nn.relu):
y_pred, loss = x_pretty.\
fully_connected(size=1024, name='layer_fc1').\
softmax_classifier(num_classes=num_classes, labels=y_true)
global_step = tf.Variable(initial_value=0, name='global_step', trainable=False)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss, global_step)
y_pred_cls = tf.argmax(y_pred, dimension=1)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
session = tf.Session()
session.run(tf.global_variables_initializer())
train_batch_size = 64
def random_batch():
# Number of images (transfer-values) in the training-set.
num_images = len(transfer_values_train)
# Create a random index.
idx = np.random.choice(num_images,
size=train_batch_size,
replace=False)
# Use the random index to select random x and y-values.
# We use the transfer-values instead of images as x-values.
x_batch = transfer_values_train[idx]
y_batch = labels_train[idx]
return x_batch, y_batch
def optimize(num_iterations):
# Start-time used for printing time-usage below.
start_time = time.time()
for i in range(num_iterations):
# Get a batch of training examples.
# x_batch now holds a batch of images (transfer-values) and
# y_true_batch are the true labels for those images.
x_batch, y_true_batch = random_batch()
# Put the batch into a dict with the proper names
# for placeholder variables in the TensorFlow graph.
feed_dict_train = {x: x_batch,
y_true: y_true_batch}
# Run the optimizer using this batch of training data.
# TensorFlow assigns the variables in feed_dict_train
# to the placeholder variables and then runs the optimizer.
# We also want to retrieve the global_step counter.
i_global, _ = session.run([global_step, optimizer],
feed_dict=feed_dict_train)
# Print status to screen every 100 iterations (and last).
if (i_global % 100 == 0) or (i == num_iterations - 1):
# Calculate the accuracy on the training-batch.
batch_acc = session.run(accuracy,
feed_dict=feed_dict_train)
# Print status.
msg = "Global Step: {0:>6}, Training Batch Accuracy: {1:>6.1%}"
print(msg.format(i_global, batch_acc))
# Ending time.
end_time = time.time()
# Difference between start and end-times.
time_dif = end_time - start_time
# Print the time-usage.
print("Time usage: " + str(timedelta(seconds=int(round(time_dif)))))
def plot_example_errors(cls_pred, correct):
# This function is called from print_test_accuracy() below.
# cls_pred is an array of the predicted class-number for
# all images in the test-set.
# correct is a boolean array whether the predicted class
# is equal to the true class for each image in the test-set.
# Negate the boolean array.
incorrect = (correct == False)
# Get the indices for the incorrectly classified images.
idx = np.flatnonzero(incorrect)
# Number of images to select, max 9.
n = min(len(idx), 9)
# Randomize and select n indices.
idx = np.random.choice(idx,
size=n,
replace=False)
# Get the predicted classes for those images.
cls_pred = cls_pred[idx]
# Get the true classes for those images.
cls_true = cls_test[idx]
# Load the corresponding images from the test-set.
# Note: We cannot do image_paths_test[idx] on lists of strings.
image_paths = [image_paths_test[i] for i in idx]
images = load_images(image_paths)
# Plot the images.
plot_images(images=images,
cls_true=cls_true,
cls_pred=cls_pred)
# Import a function from sklearn to calculate the confusion-matrix.
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cls_pred):
# This is called from print_test_accuracy() below.
# cls_pred is an array of the predicted class-number for
# all images in the test-set.
# Get the confusion matrix using sklearn.
cm = confusion_matrix(y_true=cls_test, # True class for test-set.
y_pred=cls_pred) # Predicted class.
# Print the confusion matrix as text.
for i in range(num_classes):
# Append the class-name to each line.
class_name = "({}) {}".format(i, class_names[i])
print(cm[i, :], class_name)
# Print the class-numbers for easy reference.
class_numbers = [" ({0})".format(i) for i in range(num_classes)]
print("".join(class_numbers))
# Split the data-set in batches of this size to limit RAM usage.
batch_size = 256
def predict_cls(transfer_values, labels, cls_true):
# Number of images.
num_images = len(transfer_values)
# Allocate an array for the predicted classes which
# will be calculated in batches and filled into this array.
cls_pred = np.zeros(shape=num_images, dtype=np.int)
# Now calculate the predicted classes for the batches.
# We will just iterate through all the batches.
# There might be a more clever and Pythonic way of doing this.
# The starting index for the next batch is denoted i.
i = 0
while i < num_images:
# The ending index for the next batch is denoted j.
j = min(i + batch_size, num_images)
# Create a feed-dict with the images and labels
# between index i and j.
feed_dict = {x: transfer_values[i:j],
y_true: labels[i:j]}
# Calculate the predicted class using TensorFlow.
cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch.
i = j
# Create a boolean array whether each image is correctly classified.
correct = (cls_true == cls_pred)
return correct, cls_pred
def predict_cls_test():
return predict_cls(transfer_values = transfer_values_test,
labels = labels_test,
cls_true = cls_test)
def classification_accuracy(correct):
# When averaging a boolean array, False means 0 and True means 1.
# So we are calculating: number of True / len(correct) which is
# the same as the classification accuracy.
# Return the classification accuracy
# and the number of correct classifications.
return correct.mean(), correct.sum()
def print_test_accuracy(show_example_errors=False,
show_confusion_matrix=False):
# For all the images in the test-set,
# calculate the predicted classes and whether they are correct.
correct, cls_pred = predict_cls_test()
# Classification accuracy and the number of correct classifications.
acc, num_correct = classification_accuracy(correct)
# Number of images being classified.
num_images = len(correct)
# Print the accuracy.
msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})"
print(msg.format(acc, num_correct, num_images))
# Plot some examples of mis-classifications, if desired.
if show_example_errors:
print("Example errors:")
plot_example_errors(cls_pred=cls_pred, correct=correct)
# Plot the confusion matrix, if desired.
if show_confusion_matrix:
print("Confusion Matrix:")
plot_confusion_matrix(cls_pred=cls_pred)
# optimize(num_iterations=2000)
print_test_accuracy(show_example_errors=False, show_confusion_matrix=True)
def classify(image_path):
# Display the image.
# display(Image(image_path))
# Use the Inception model to classify the image.
pred = model.classify(image_path=image_path)
# Print the scores and names for the top-10 predictions.
model.print_scores(pred=pred, k=10, only_first_name=True)
# image_path = os.path.join(inception.data_dir, 'cropped_panda.jpg')
# classify(image_path)
classify(image_path="data/knifey-spoony/knifey/knifey-01-0001.jpg")