-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
152 lines (117 loc) · 4.7 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import random
import numpy as np
from reinforcement_snake_game import ReinforcementSnakeGame, Direction, Point
from collections import deque
from Reinforcement_model import LinearQNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LEARNING_RATE = 0.001
class Agent:
def __init__(self):
self.no_of_games = 0
self.epsilon = 0 # Randomness
self.gamma = 0.9 # Discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft
self.model = LinearQNet(11, 256, 3)
self.trainer = QTrainer(self.model, lr=LEARNING_RATE, gamma=self.gamma)
def get_state(self, game):
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
# Danger straight
(dir_r and game.is_collision(point_r)) or
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
# Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
# Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
# Move direction
dir_l,
dir_r,
dir_u,
dir_d,
# Food location
game.food.x < game.head.x, # food left
game.food.x > game.head.x, # food right
game.food.y < game.head.y, # food up
game.food.y > game.head.y # food down
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) # Popping left if MAX_MEMORY exceed
# (()) for get as one tuple
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE)
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
#for state, action, reward, nexrt_state, done in mini_sample
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
# random moves: tradeoff exploration / exploitation
self.epsilon = 80 - self.no_of_games
final_move = [0,0,0]
if random.randint(0, 200) < self.epsilon:
move = random.randint(0,2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
game = ReinforcementSnakeGame()
while True:
# Get the old state
state_old = agent.get_state(game)
# Get move
final_move = agent.get_action(state_old)
# Perform move and get new state
reward, done, score = game.play_step(final_move)
new_state = agent.get_state(game)
# Train short memory
agent.train_short_memory(state_old, final_move, reward, new_state, done)
agent.remember(state_old, final_move, reward, new_state, done)
if done:
# training long memory , ploting the result
game.reset()
agent.no_of_games += 1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.no_of_games, 'Score', score, 'Record', record)
# plot
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.no_of_games
plot_mean_scores.append(mean_score)
plot(plot_scores, plot_mean_scores)
if __name__ == '__main__':
train()