From a8d4eda8c9bce1b3f7d168ca9349486fc8d0a7d0 Mon Sep 17 00:00:00 2001 From: Thomas Wolgast Date: Wed, 9 Oct 2024 14:28:05 +0200 Subject: [PATCH] Update to version 0.1.0 --- CITATION.cff | 41 +++++++++++++++++++++++++++++++++++++++++ README.md | 3 ++- opfgym/opf_env.py | 1 + setup.py | 6 +++--- 4 files changed, 47 insertions(+), 4 deletions(-) create mode 100644 CITATION.cff diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 0000000..a929de6 --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,41 @@ +# This CITATION.cff file was generated with cffinit. +# Visit https://bit.ly/cffinit to generate yours today! + +cff-version: 1.2.0 +title: OPF-Gym +message: >- + If you use this software, please cite it using the + metadata from this file. Additionally, please check out the publication + "Learning the optimal power flow: Environment design matters", where the + library was first introduced. + (https://www.sciencedirect.com/science/article/pii/S2666546824000764) +type: software +authors: + - given-names: Thomas + family-names: Wolgast + email: thomas.wolgast@uni-oldenburg.de + affiliation: Carl von Ossietzky Universität Oldenburg + orcid: 'https://orcid.org/0000-0002-9042-9964' +repository-code: 'https://github.com/Digitalized-Energy-Systems/opfgym' +abstract: >- + The OPF-Gym library allows for easy creation of + reinforcement learning (RL) environments for solving the + optimal power flow (OPF) problem. OPF-Gym also provides + five benchmark environments to ensure comparability of + future RL-OPF research. Various kinds of OPF problems are + supported, for example, multi-stage OPF, discrete actions, + stochastic OPF, etc. Further, it is possible to generate + labeled training data for supervised learning, which again + improves comparability of research advances. +keywords: + - Optimal Power Flow + - Reinforcement Learning + - Gymnasium + - Supervised Learning + - Voltage Control + - Economic Dispatch + - Reactive Power Market + - Load Shedding + - Benchmark +license: MIT +version: 0.1.0 diff --git a/README.md b/README.md index d9239dc..b7b19b8 100644 --- a/README.md +++ b/README.md @@ -24,7 +24,8 @@ Tested for python 3.10. ### Environments -Currently, five OPF benchmark environments are available: +Currently, five OPF benchmark environments are available. Additionally, some +example environments for more advanced features can be found in `opfgym/examples`. #### Maximize Renewable Feed-In (MaxRenewable) Use `from opfgym.envs import MaxRenewable` to import this env. diff --git a/opfgym/opf_env.py b/opfgym/opf_env.py index e9ad15d..ba365de 100644 --- a/opfgym/opf_env.py +++ b/opfgym/opf_env.py @@ -21,6 +21,7 @@ warnings.simplefilter('once') + class PowerFlowNotAvailable(Exception): pass diff --git a/setup.py b/setup.py index 7f0eaef..7e8784d 100644 --- a/setup.py +++ b/setup.py @@ -7,14 +7,14 @@ setup( name='opfgym', - version='0.0.1', + version='0.1.0', author='Thomas Wolgast', author_email='thomas.wolgast@uol.de', - description='Some environments to learn the Optimal Power Flow with Reinforcement Learning', + description='Environment framework to learn the Optimal Power Flow with Reinforcement Learning, including multiple benchmark environments.', long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(include=['opfgym', 'opfgym.*']), - url='https://gitlab.com/thomaswolgast/opfgym', + url='https://github.com/Digitalized-Energy-Systems/opfgym', license='MIT', install_requires=[ 'numpy==1.22.4',