-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalgorithm.c
executable file
·411 lines (381 loc) · 16.5 KB
/
algorithm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/** \file algorithm.cpp ******************************************************
*
* Project: MAXREFDES117#
* Filename: algorithm.cpp
* Description: This module calculates the heart rate/SpO2 level
*
*
* --------------------------------------------------------------------
*
* This code follows the following naming conventions:
*
* char ch_pmod_value
* char (array) s_pmod_s_string[16]
* float f_pmod_value
* int32_t n_pmod_value
* int32_t (array) an_pmod_value[16]
* int16_t w_pmod_value
* int16_t (array) aw_pmod_value[16]
* uint16_t uw_pmod_value
* uint16_t (array) auw_pmod_value[16]
* uint8_t uch_pmod_value
* uint8_t (array) auch_pmod_buffer[16]
* uint32_t un_pmod_value
* int32_t * pn_pmod_value
*
* ------------------------------------------------------------------------- */
/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "algorithm.h"
const uint16_t auw_hamm[31] = {41, 276, 512, 276, 41}; //Hamm= long16(512* hamming(5)');
//uch_spo2_table is computed as -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ;
const uint8_t uch_spo2_table[184] = {95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99,
99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97,
97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91,
90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81,
80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67,
66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50,
49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29,
28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5,
3, 2, 1};
void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid,
int32_t *pn_heart_rate, int8_t *pch_hr_valid)
/**
* \brief Calculate the heart rate and SpO2 level
* \par Details
* By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
* Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
* Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
*
* \param[in] *pun_ir_buffer - IR sensor data buffer
* \param[in] n_ir_buffer_length - IR sensor data buffer length
* \param[in] *pun_red_buffer - Red sensor data buffer
* \param[out] *pn_spo2 - Calculated SpO2 value
* \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid
* \param[out] *pn_heart_rate - Calculated heart rate value
* \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid
*
* \retval None
*/
{
static int32_t an_dx[BUFFER_SIZE - MA4_SIZE]; // delta
static int32_t an_x[BUFFER_SIZE]; //ir
static int32_t an_y[BUFFER_SIZE]; //red
uint32_t un_ir_mean, un_only_once;
int32_t k, n_i_ratio_count;
int32_t i, s, m, n_exact_ir_valley_locs_count, n_middle_idx;
int32_t n_th1, n_npks, n_c_min;
int32_t an_ir_valley_locs[15];
int32_t an_exact_ir_valley_locs[15];
int32_t an_dx_peak_locs[15];
int32_t n_peak_interval_sum;
int32_t n_y_ac, n_x_ac;
int32_t n_spo2_calc;
int32_t n_y_dc_max, n_x_dc_max;
int32_t n_y_dc_max_idx = 0, n_x_dc_max_idx = 0;
int32_t an_ratio[5], n_ratio_average;
int32_t n_nume, n_denom;
// remove DC of ir signal
un_ir_mean = 0;
for (k = 0; k < n_ir_buffer_length; k++)
un_ir_mean += pun_ir_buffer[k];
un_ir_mean = un_ir_mean / n_ir_buffer_length;
for (k = 0; k < n_ir_buffer_length; k++)
an_x[k] = pun_ir_buffer[k] - un_ir_mean;
// 4 pt Moving Average
for (k = 0; k < BUFFER_SIZE - MA4_SIZE; k++)
{
n_denom = (an_x[k] + an_x[k + 1] + an_x[k + 2] + an_x[k + 3]);
an_x[k] = n_denom / (int32_t)4;
}
// get difference of smoothed IR signal
for (k = 0; k < BUFFER_SIZE - MA4_SIZE - 1; k++)
an_dx[k] = (an_x[k + 1] - an_x[k]);
// 2-pt Moving Average to an_dx
for (k = 0; k < BUFFER_SIZE - MA4_SIZE - 2; k++)
{
an_dx[k] = (an_dx[k] + an_dx[k + 1]) / 2;
}
// hamming window
// flip wave form so that we can detect valley with peak detector
for (i = 0; i < BUFFER_SIZE - HAMMING_SIZE - MA4_SIZE - 2; i++)
{
s = 0;
for (k = i; k < i + HAMMING_SIZE; k++)
{
s -= an_dx[k] * auw_hamm[k - i];
}
an_dx[i] = s / (int32_t)1146; // divide by sum of auw_hamm
}
n_th1 = 0; // threshold calculation
for (k = 0; k < BUFFER_SIZE - HAMMING_SIZE; k++)
{
n_th1 += ((an_dx[k] > 0) ? an_dx[k] : ((int32_t)0 - an_dx[k]));
}
n_th1 = n_th1 / (BUFFER_SIZE - HAMMING_SIZE);
// peak location is acutally index for sharpest location of raw signal since we flipped the signal
maxim_find_peaks(an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE - HAMMING_SIZE, n_th1, 8, 5); //peak_height, peak_distance, max_num_peaks
n_peak_interval_sum = 0;
if (n_npks >= 2)
{
for (k = 1; k < n_npks; k++)
n_peak_interval_sum += (an_dx_peak_locs[k] - an_dx_peak_locs[k - 1]);
n_peak_interval_sum = n_peak_interval_sum / (n_npks - 1);
*pn_heart_rate = (int32_t)(6000 / n_peak_interval_sum); // beats per minutes
*pch_hr_valid = 1;
}
else
{
*pn_heart_rate = -999;
*pch_hr_valid = 0;
}
for (k = 0; k < n_npks; k++)
an_ir_valley_locs[k] = an_dx_peak_locs[k] + HAMMING_SIZE / 2;
// raw value : RED(=y) and IR(=X)
// we need to assess DC and AC value of ir and red PPG.
for (k = 0; k < n_ir_buffer_length; k++)
{
an_x[k] = pun_ir_buffer[k];
an_y[k] = pun_red_buffer[k];
}
// find precise min near an_ir_valley_locs
n_exact_ir_valley_locs_count = 0;
for (k = 0; k < n_npks; k++)
{
un_only_once = 1;
m = an_ir_valley_locs[k];
n_c_min = 16777216; //2^24;
if (m + 5 < BUFFER_SIZE - HAMMING_SIZE && m - 5 > 0)
{
for (i = m - 5; i < m + 5; i++)
if (an_x[i] < n_c_min)
{
if (un_only_once > 0)
{
un_only_once = 0;
}
n_c_min = an_x[i];
an_exact_ir_valley_locs[k] = i;
}
if (un_only_once == 0)
n_exact_ir_valley_locs_count++;
}
}
if (n_exact_ir_valley_locs_count < 2)
{
*pn_spo2 = -999; // do not use SPO2 since signal ratio is out of range
*pch_spo2_valid = 0;
return;
}
// 4 pt MA
for (k = 0; k < BUFFER_SIZE - MA4_SIZE; k++)
{
an_x[k] = (an_x[k] + an_x[k + 1] + an_x[k + 2] + an_x[k + 3]) / (int32_t)4;
an_y[k] = (an_y[k] + an_y[k + 1] + an_y[k + 2] + an_y[k + 3]) / (int32_t)4;
}
//using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
//finding AC/DC maximum of raw ir * red between two valley locations
n_ratio_average = 0;
n_i_ratio_count = 0;
for (k = 0; k < 5; k++)
an_ratio[k] = 0;
for (k = 0; k < n_exact_ir_valley_locs_count; k++)
{
if (an_exact_ir_valley_locs[k] > BUFFER_SIZE)
{
*pn_spo2 = -999; // do not use SPO2 since valley loc is out of range
*pch_spo2_valid = 0;
return;
}
}
// find max between two valley locations
// and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2
for (k = 0; k < n_exact_ir_valley_locs_count - 1; k++)
{
n_y_dc_max = -16777216;
n_x_dc_max = -16777216;
if (an_exact_ir_valley_locs[k + 1] - an_exact_ir_valley_locs[k] > 10)
{
for (i = an_exact_ir_valley_locs[k]; i < an_exact_ir_valley_locs[k + 1]; i++)
{
if (an_x[i] > n_x_dc_max)
{
n_x_dc_max = an_x[i];
n_x_dc_max_idx = i;
}
if (an_y[i] > n_y_dc_max)
{
n_y_dc_max = an_y[i];
n_y_dc_max_idx = i;
}
}
n_y_ac = (an_y[an_exact_ir_valley_locs[k + 1]] - an_y[an_exact_ir_valley_locs[k]]) * (n_y_dc_max_idx - an_exact_ir_valley_locs[k]); //red
n_y_ac = an_y[an_exact_ir_valley_locs[k]] + n_y_ac / (an_exact_ir_valley_locs[k + 1] - an_exact_ir_valley_locs[k]);
n_y_ac = an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw
n_x_ac = (an_x[an_exact_ir_valley_locs[k + 1]] - an_x[an_exact_ir_valley_locs[k]]) * (n_x_dc_max_idx - an_exact_ir_valley_locs[k]); // ir
n_x_ac = an_x[an_exact_ir_valley_locs[k]] + n_x_ac / (an_exact_ir_valley_locs[k + 1] - an_exact_ir_valley_locs[k]);
n_x_ac = an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw
n_nume = (n_y_ac * n_x_dc_max) >> 7; //prepare X100 to preserve floating value
n_denom = (n_x_ac * n_y_dc_max) >> 7;
if (n_denom > 0 && n_i_ratio_count < 5 && n_nume != 0)
{
an_ratio[n_i_ratio_count] = (n_nume * 100) / n_denom; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ;
n_i_ratio_count++;
}
}
}
maxim_sort_ascend(an_ratio, n_i_ratio_count);
n_middle_idx = n_i_ratio_count / 2;
if (n_middle_idx > 1)
n_ratio_average = (an_ratio[n_middle_idx - 1] + an_ratio[n_middle_idx]) / 2; // use median
else
n_ratio_average = an_ratio[n_middle_idx];
if (n_ratio_average > 2 && n_ratio_average < 184)
{
n_spo2_calc = uch_spo2_table[n_ratio_average];
*pn_spo2 = n_spo2_calc;
*pch_spo2_valid = 1; // float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table
}
else
{
*pn_spo2 = -999; // do not use SPO2 since signal ratio is out of range
*pch_spo2_valid = 0;
}
}
void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
/**
* \brief Find peaks
* \par Details
* Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
*
* \retval None
*/
{
maxim_peaks_above_min_height(pn_locs, pn_npks, pn_x, n_size, n_min_height);
maxim_remove_close_peaks(pn_locs, pn_npks, pn_x, n_min_distance);
*pn_npks = min(*pn_npks, n_max_num);
}
void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height)
/**
* \brief Find peaks above n_min_height
* \par Details
* Find all peaks above MIN_HEIGHT
*
* \retval None
*/
{
int32_t i = 1, n_width;
*pn_npks = 0;
while (i < n_size - 1)
{
if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i - 1])
{ // find left edge of potential peaks
n_width = 1;
while (i + n_width < n_size && pn_x[i] == pn_x[i + n_width]) // find flat peaks
n_width++;
if (pn_x[i] > pn_x[i + n_width] && (*pn_npks) < 15)
{ // find right edge of peaks
pn_locs[(*pn_npks)++] = i;
// for flat peaks, peak location is left edge
i += n_width + 1;
}
else
i += n_width;
}
else
i++;
}
}
void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
/**
* \brief Remove peaks
* \par Details
* Remove peaks separated by less than MIN_DISTANCE
*
* \retval None
*/
{
int32_t i, j, n_old_npks, n_dist;
/* Order peaks from large to small */
maxim_sort_indices_descend(pn_x, pn_locs, *pn_npks);
for (i = -1; i < *pn_npks; i++)
{
n_old_npks = *pn_npks;
*pn_npks = i + 1;
for (j = i + 1; j < n_old_npks; j++)
{
n_dist = pn_locs[j] - (i == -1 ? -1 : pn_locs[i]); // lag-zero peak of autocorr is at index -1
if (n_dist > n_min_distance || n_dist < -n_min_distance)
pn_locs[(*pn_npks)++] = pn_locs[j];
}
}
// Resort indices longo ascending order
maxim_sort_ascend(pn_locs, *pn_npks);
}
void maxim_sort_ascend(int32_t *pn_x, int32_t n_size)
/**
* \brief Sort array
* \par Details
* Sort array in ascending order (insertion sort algorithm)
*
* \retval None
*/
{
int32_t i, j, n_temp;
for (i = 1; i < n_size; i++)
{
n_temp = pn_x[i];
for (j = i; j > 0 && n_temp < pn_x[j - 1]; j--)
pn_x[j] = pn_x[j - 1];
pn_x[j] = n_temp;
}
}
void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
/**
* \brief Sort indices
* \par Details
* Sort indices according to descending order (insertion sort algorithm)
*
* \retval None
*/
{
int32_t i, j, n_temp;
for (i = 1; i < n_size; i++)
{
n_temp = pn_indx[i];
for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j - 1]]; j--)
pn_indx[j] = pn_indx[j - 1];
pn_indx[j] = n_temp;
}
}