-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_bow_models.py
75 lines (58 loc) · 2.09 KB
/
basic_bow_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfTransformer
from preprocessing import clean_text
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score,f1_score
from xgboost import XGBClassifier
def convert_results_to_str(y_test,y_pred):
return str(confusion_matrix(y_test, y_pred))+"\n\n accuracy: "+str(accuracy_score(y_test,y_pred)) \
+"\n f1 score: " + str(f1_score(y_test,y_pred,average="weighted"))
class BOW_Model:
def __init__(self, model):
self.models = {
'SVC': LinearSVC(),
'RF': RandomForestClassifier(),
'MNB': MultinomialNB(),
'NC' : NearestCentroid(),
"XGB": XGBClassifier()
}
self.subModelName = model
self.updateModel(self.models[model])
def get_params(self,a,b):
model = self.models[self.subModelName]
return model.get_params()
def updateModel(self,model):
self.model = model
def set_params_of_model(self,params):
model = self.models[self.subModelName]
model.set_params(**params)
self.updateModel(model)
def fit(self, X_train, y_train):
self.model.fit(X_train, y_train)
def predict(self, text):
return self.model.predict([clean_text(text, remove_whitespaces=False)])[0]
def evaluate(self, X_test, y_test):
y_pred = self.model.predict(X_test)
return convert_results_to_str(y_test,y_pred)
class TfIdf_BOW_Model(BOW_Model):
def updateModel(self,model):
self.model = Pipeline([
('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', model),
])
def __init__(self, model):
super().__init__(model)
class Direct_BOW_Model(BOW_Model):
def updateModel(self,model):
self.model = Pipeline([
('vect', CountVectorizer()),
('clf', model),
])
def __init__(self, model):
super().__init__(model)