-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdeploy.py
241 lines (207 loc) · 6.89 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
Run this script directly after 'python3 manage.py migrate'.
"""
from os import path, environ
from datetime import datetime
from tensorflow.keras import Sequential, layers, Model
from django.db.utils import OperationalError
import django
from dotenv import load_dotenv
load_dotenv()
environ.setdefault("DJANGO_SETTINGS_MODULE", "schoolnn_app.settings")
django.setup()
from schoolnn.dataset import zip_to_full_dataset # noqa: E402
from schoolnn.models import ( # noqa: E402
Dataset,
Architecture,
TrainingParameter,
Project,
User,
Workspace,
TerminationCondition,
LossFunction,
Optimizer,
AugmentationOptions,
)
from schoolnn.training import ( # noqa: E402
WrappedArchitecture,
)
CAT_DOG_DATASET = "./cat_dog_dataset.zip"
MNIST_DATASET = "./minst.zip"
def get_cat_dog_solver() -> Model:
model = Sequential()
model.add(layers.Input(shape=(128, 128, 3)))
model.add(
layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
model.add(
layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
model.add(
layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
model.add(
layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.4))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dropout(0.4))
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dropout(0.4))
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dropout(0.4))
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dropout(0.4))
model.add(layers.Dense(2, activation="softmax"))
return model
def get_minst_solver() -> Model:
model = Sequential()
model.add(layers.Input(shape=(28, 28, 3)))
# Conv
model.add(
layers.Conv2D(filters=256, kernel_size=(3, 3), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
# Conv
model.add(
layers.Conv2D(filters=128, kernel_size=(2, 2), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
# Conv
model.add(
layers.Conv2D(filters=128, kernel_size=(2, 2), activation="relu")
)
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.BatchNormalization())
model.add(layers.Flatten())
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dropout(0.4))
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dropout(0.4))
model.add(layers.Dense(10, activation="softmax"))
return model
def get_cat_dog_dataset(user: User) -> Dataset:
if not path.isfile(CAT_DOG_DATASET):
msg = "Erwartete Datei für Katzen-Hunde-Datensatz: {} nicht gefunden."
print(msg.format(CAT_DOG_DATASET))
quit()
dataset = Dataset.objects.create(
name="Katzen und Hunde",
user=user,
custom=False,
)
zip_to_full_dataset(open(CAT_DOG_DATASET, "rb"), dataset)
return dataset
def cat_dog_project_setup(user: User):
print("Erstelle DogCat Projekt")
cat_dog_solver = get_cat_dog_solver()
wrarch = WrappedArchitecture.from_keras_model(cat_dog_solver)
arch = Architecture.objects.create(
name="DogCat Solver Netz #1",
user=user,
custom=False,
architecture_json=wrarch.to_dict(),
)
training_parameter = TrainingParameter(
validation_split=0.1,
learning_rate=0.001,
termination_condition=TerminationCondition(seconds=600),
batch_size=32,
loss_function=LossFunction.CATEGORICAL_CROSSENTROPY,
optimizer=Optimizer.ADAM,
augmentation_options=AugmentationOptions.all_activated(),
)
print("Lade DogCat Datensatz")
cat_dog_dataset = get_cat_dog_dataset(user)
Project.objects.create(
name="DogCat Solver Projekt #1",
dataset=cat_dog_dataset,
user=user,
architecture=arch,
training_parameter_json=training_parameter.to_dict(),
)
print("Fertig")
def get_mnist_dataset(user: User) -> User:
if not path.isfile(MNIST_DATASET):
print(
"Erwartete Datei für MNIST-Datensatz: {} nicht gefunden.".format(
MNIST_DATASET
)
)
quit()
dataset = Dataset.objects.create(
name="MNIST",
user=user,
custom=False,
)
zip_to_full_dataset(open(MNIST_DATASET, "rb"), dataset)
return dataset
def mnist_project_setup(user: User):
print("Erstelle MNIST Projekt")
minst_solver = get_minst_solver()
wrarch = WrappedArchitecture.from_keras_model(minst_solver)
arch = Architecture.objects.create(
name="MNIST Solver Netz #1",
user=user,
custom=False,
architecture_json=wrarch.to_dict(),
)
training_parameter = TrainingParameter(
validation_split=0.1,
learning_rate=0.001,
termination_condition=TerminationCondition(seconds=600),
batch_size=32,
loss_function=LossFunction.CATEGORICAL_CROSSENTROPY,
optimizer=Optimizer.ADAM,
augmentation_options=AugmentationOptions.all_activated(),
)
print("Lade MNIST Datensatz")
mnist_dataset = get_mnist_dataset(user)
Project.objects.create(
name="MNIST Solver Projekt #1",
dataset=mnist_dataset,
user=user,
architecture=arch,
training_parameter_json=training_parameter.to_dict(),
)
print("Fertig")
@django.db.transaction.atomic()
def main():
workspace = Workspace.objects.create(
name="Workspace #1",
settings_json="",
created_at=datetime.now(),
updated_at=datetime.now(),
)
user = User.objects.get(id=1) # should be admin
user.workspace = workspace
user.save()
mnist_project_setup(user)
cat_dog_project_setup(user)
def try_main_and_quit_with_helpful_error_messages():
try:
main()
except OperationalError as e:
if "no such table" in str(e):
print("Database error, table not existing.")
print('Did you run "python3 manage.py migrate" yet?')
quit()
raise
except User.DoesNotExist:
print("Example projects will be assigned to the admin user (id = 1).")
print("But there is no such user.")
print('Did you run "python3 manage.py createsuperuser" yet?')
quit()
if __name__ == "__main__":
try_main_and_quit_with_helpful_error_messages()