-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
51 lines (44 loc) · 1.67 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from torch.utils.data import Dataset
import os
from PIL import Image
import numpy as np
import cv2
# Define dataset class
class AMFDataset(Dataset):
def __init__(self, root_dir, ids:list, transform=None):
"""
Args:
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied on a sample.
"""
self.root_dir = root_dir
self.transform = transform
self.classes = [x for x in os.listdir(root_dir) if '.' not in x]
self.images = []
disregard=[]
for cls in self.classes:
class_dir = os.path.join(root_dir, cls)
if '.' in class_dir:
continue
for img in os.listdir(class_dir):
if '.DS' in img:
continue
uid = int(img.split('_')[-1][:-4])
if ids is not None and img.split(os.sep)[-1] not in ids: # select for train/test
continue
self.images.append((os.path.join(class_dir, img), cls))
print(self.classes)
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path, label = self.images[idx]
# pillow_image = Image.open(img_path).convert("RGB")
# image = np.array(pillow_image)
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.transform:
image = self.transform(image=image)['image']
# print(image)
# Get label as index of the class name
label_idx = self.classes.index(label)
return image, label_idx