-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreranker.py
264 lines (232 loc) · 9.86 KB
/
reranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def get_distance_bm25(corpus, query):
from rank_bm25 import BM25Okapi
tokenized_corpus = [doc.split(" ") for doc in corpus]
bm25 = BM25Okapi(tokenized_corpus)
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)
idx = [(ii, for ii in -doc_scores.argsort()]
return idx
def get_rank_results(
self,
context: list,
question: str,
rank_method: str,
condition_in_question: str,
context_tokens_length: list,
):
def get_distance_bm25(corpus, query):
from rank_bm25 import BM25Okapi
tokenized_corpus = [doc.split(" ") for doc in corpus]
bm25 = BM25Okapi(tokenized_corpus)
tokenized_query = query.split(" ")
doc_scores = bm25.get_scores(tokenized_query)
idx = [(ii, 0) for ii in (-doc_scores).argsort()]
return idx
def get_distance_gzip(corpus, query):
def get_score(x, y):
cx, cy = len(gzip.compress(x.encode())), len(gzip.compress(y.encode()))
cxy = len(gzip.compress(f"{x} {y}".encode()))
return (cxy - min(cx, cy)) / max(cx, cy)
import gzip
doc_scores = [get_score(doc, query) for doc in corpus]
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_sentbert(corpus, query):
from sentence_transformers import SentenceTransformer, util
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
self.retrieval_model = SentenceTransformer("multi-qa-mpnet-base-dot-v1")
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(corpus)
query = self.retrieval_model.encode(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_openai(corpus, query):
import openai
from sentence_transformers import util
openai.api_key = self.open_api_config.get("api_key", "")
openai.api_base = self.open_api_config.get(
"api_base", "https://api.openai.com/v1"
)
openai.api_type = self.open_api_config.get("api_type", "open_ai")
openai.api_version = self.open_api_config.get("api_version", "2023-05-15")
engine = self.open_api_config.get("engine", "text-embedding-ada-002")
def get_embed(text):
return openai.Embedding.create(
input=[text.replace("\n", " ")], engine=engine
)["data"][0]["embedding"]
doc_embeds = [get_embed(i) for i in corpus]
query = get_embed(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_sentbert_bge(corpus, query):
from sentence_transformers import SentenceTransformer, util
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
self.retrieval_model = SentenceTransformer("BAAI/bge-large-en-v1.5")
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(
[i for i in corpus], normalize_embeddings=True
)
query = self.retrieval_model.encode(query, normalize_embeddings=True)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_bge_ranker(corpus, query):
from transformers import AutoModelForSequenceClassification, AutoTokenizer
pairs = [[i, query] for i in corpus]
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-large")
model = (
AutoModelForSequenceClassification.from_pretrained(
"BAAI/bge-reranker-large"
)
.eval()
.to(self.device)
)
self.retrieval_model = [tokenizer, model]
self.retrieval_model_name = rank_method
with torch.no_grad():
inputs = self.retrieval_model[0](
pairs,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
scores = (
self.retrieval_model[1](**inputs, return_dict=True)
.logits.view(
-1,
)
.float()
)
idx = [(ii, 0) for ii in np.argsort(-scores.cpu())]
return idx
def get_distance_bge_llmembedder(corpus, query):
from transformers import AutoModel, AutoTokenizer
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
tokenizer = AutoTokenizer.from_pretrained("BAAI/llm-embedder")
model = (
AutoModel.from_pretrained("BAAI/llm-embedder")
.eval()
.to(self.device)
)
self.retrieval_model = [tokenizer, model]
self.retrieval_model_name = rank_method
instruction_qa_query = (
"Represent this query for retrieving relevant documents: "
)
instruction_qa_key = "Represent this document for retrieval: "
queries = [instruction_qa_query + query for _ in corpus]
keys = [instruction_qa_key + key for key in corpus]
with torch.no_grad():
query_inputs = self.retrieval_model[0](
queries,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
key_inputs = self.retrieval_model[0](
keys,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
).to(self.device)
query_outputs = self.retrieval_model[1](**query_inputs)
key_outputs = self.retrieval_model[1](**key_inputs)
# CLS pooling
query_embeddings = query_outputs.last_hidden_state[:, 0]
key_embeddings = key_outputs.last_hidden_state[:, 0]
# Normalize
query_embeddings = torch.nn.functional.normalize(
query_embeddings, p=2, dim=1
)
key_embeddings = torch.nn.functional.normalize(
key_embeddings, p=2, dim=1
)
similarity = query_embeddings @ key_embeddings.T
idx = [(ii, 0) for ii in np.argsort(-similarity[0].cpu())]
return idx
def get_distance_jinza(corpus, query):
from numpy.linalg import norm
from transformers import AutoModel
def cos_sim(a, b):
return (a @ b.T) / (norm(a) * norm(b))
if self.retrieval_model is None or self.retrieval_model_name != rank_method:
model = (
AutoModel.from_pretrained(
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
)
.eval()
.to(self.device)
)
self.retrieval_model = model
self.retrieval_model_name = rank_method
doc_embeds = self.retrieval_model.encode(corpus)
query = self.retrieval_model.encode(query)
doc_scores = cos_sim(doc_embeds, query)
idx = [(ii, 0) for ii in np.argsort(-doc_scores)]
return idx
def get_distance_voyageai(corpus, query):
import voyageai
from sentence_transformers import util
voyageai.api_key = self.open_api_config.get("voyageai_api_key", "")
def get_embed(text):
return voyageai.get_embedding(text, model="voyage-01")
doc_embeds = [get_embed(i) for i in corpus]
query = get_embed(query)
doc_scores = -util.dot_score(doc_embeds, query).cpu().numpy().reshape(-1)
idx = [(ii, 0) for ii in np.argsort(doc_scores)]
return idx
def get_distance_cohere(corpus, query):
import cohere
api_key = self.open_api_config.get("cohere_api_key", "")
co = cohere.Client(api_key)
results = co.rerank(
model="rerank-english-v2.0", query=query, documents=corpus, top_n=20
)
c_map = {jj: ii for ii, jj in enumerate(corpus)}
doc_rank = [c_map[ii.document["text"]] for ii in results]
idx = [(ii, 0) for ii in doc_rank]
return idx
def get_distance_longllmlingua(corpus, query):
context_ppl = [
self.get_condition_ppl(
d,
query
+ " We can get the answer to this question in the given documents.",
condition_in_question,
)
- dl * 2 / 250 * 0
for d, dl in zip(corpus, context_tokens_length)
]
sort_direct = -1 if condition_in_question == "none" else 1
ys = sorted(enumerate(context_ppl), key=lambda x: sort_direct * x[1])
return ys
method = None
if rank_method == "bm25":
method = get_distance_bm25
elif rank_method == "gzip":
method = get_distance_gzip
elif rank_method == "sentbert":
method = get_distance_sentbert
elif rank_method == "openai":
method = get_distance_openai
elif rank_method in ["longllmlingua", "llmlingua"]:
method = get_distance_longllmlingua
elif rank_method == "bge":
method = get_distance_sentbert_bge
elif rank_method == "bge_reranker":
method = get_distance_bge_ranker
elif rank_method == "bge_llmembedder":
method = get_distance_bge_llmembedder
elif rank_method == "jinza":
method = get_distance_jinza
elif rank_method == "voyageai":
method = get_distance_voyageai
elif rank_method == "cohere":
method = get_distance_cohere
return method(context, question)