-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
172 lines (130 loc) · 4.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import datetime
import os.path
import tempfile
import zipfile
from typing import Final, List
import fire
from dotenv import load_dotenv
from helpers import *
from web3 import lighthouse
from web3.cid import is_cid
python_repl = sys.executable
DATA_DIR = os.getenv("DATA_DIR", "/data")
JUPYTER_NOTEBOOK: Final[str] = ".ipynb"
PYTHON: Final[str] = ".py"
output_dir: Final[str] = os.getenv("OUTPUT_DIR", "./outputs")
OUTPUT_ARCHIVE: Final[str] = os.getenv("OUTPUT_ARCHIVE", "")
EXECUTION_FRAMEWORK: str
def path_not_found(path: str):
if not os.path.exists(path):
logging.warning(f"{path} not found")
return True
return False
def train(train_script: str, requirements_txt: str = None, data_dir=DATA_DIR):
logging.info("starting train")
data_dir = os.path.abspath(data_dir) # jupyter nb convert needs abspath
if path_not_found(data_dir):
sys.exit(1)
if requirements_txt:
logging.info("Installing dependencies in progress")
requirements_path = os.path.join(
data_dir,
requirements_txt,
)
if path_not_found(requirements_path):
logging.critical(
f"requirements path- {requirements_path} not found",
)
else:
install_dependencies(
python_repl,
requirements_path,
)
train_script = os.path.join(data_dir, train_script)
if path_not_found(train_script):
logging.critical(f"train script path- {train_script} not found")
sys.exit(1)
training_cmd: List[str]
script_ext = os.path.splitext(train_script)[1]
match script_ext:
case ".py":
EXECUTION_FRAMEWORK = PYTHON
training_cmd = [python_repl, train_script]
case ".ipynb":
EXECUTION_FRAMEWORK = JUPYTER_NOTEBOOK
cmd_string = f"jupyter nbconvert --execute --to html --output {train_script} {train_script}"
training_cmd = cmd_string.split(" ")
training_cmd = [python_repl, "-m"] + training_cmd
case _:
logging.critical("invalid training script")
sys.exit(1)
logging.info(f"train cmd - {training_cmd}")
result = subprocess.run(
training_cmd,
cwd=data_dir,
capture_output=True,
encoding="UTF-8",
)
logging.info(result.stdout)
logging.error(result.stderr)
with open(os.path.join(data_dir, "stdout"), "w") as f1, open(
os.path.join(data_dir, "stderr"),
"w",
) as f2:
f1.write(result.stdout)
f2.write(result.stderr)
# TODO: pass files directly to subprocess...
return True
def train_v2(
train_script: str,
input_archive: str,
requirements_txt: str = None,
):
logging.info(f"start {datetime.datetime.utcnow()}")
data_dir = DATA_DIR
if not os.path.exists(data_dir):
logging.warning(f"data dir {data_dir} doesnt exists")
logging.info("creating temp directory for data dir")
temp_dir = tempfile.TemporaryDirectory(
prefix="decenter-ai-",
suffix="-training-working-dir",
)
data_dir = temp_dir.name
print("data_dir is ", data_dir)
if is_cid(input_archive):
new_archive = os.path.join(data_dir, f"{input_archive}.zip")
f2 = lighthouse.download(input_archive, new_archive)
input_archive = os.path.join(data_dir, f2.name)
os.rename(new_archive, input_archive)
with zipfile.ZipFile(input_archive, "r") as zip_ref:
zip_ref.extractall(data_dir)
extracted_files = os.listdir(data_dir)
print("extracted:", extracted_files)
data_dir_contents = os.listdir(data_dir)
print("data_dir contains", data_dir_contents)
result = train(train_script, requirements_txt, data_dir)
output_archive = os.path.basename(input_archive)
output_archive = os.path.splitext(output_archive)[0]
if "decenter" not in output_archive:
output_archive = "decenter-ai-" + output_archive
if OUTPUT_ARCHIVE:
print("output archive is already specified in env: ", OUTPUT_ARCHIVE)
output_archive = OUTPUT_ARCHIVE
if result:
zipfile_ = archive_directory(
os.path.join(output_dir, output_archive),
data_dir,
)
print("archived working directory to", zipfile_)
if isinstance(data_dir, tempfile.TemporaryDirectory):
print("cleaning up the data dirctory")
data_dir.cleanup()
# temp_dir.cleanup()
# logging.debug("cleanup the temp dir")
logging.info(f"end {datetime.datetime.utcnow()}")
if __name__ == "__main__":
load_dotenv()
logging.basicConfig(level=logging.INFO)
# fire.Fire(train, "train", "Train")
# fire.Fire(train_v2, "train_v2", "Train v2")
fire.Fire({"train": train, "train_v2": train_v2})