forked from zju3dv/NeuralRecon-W
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
84 lines (65 loc) · 3.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import math
from opt import get_opts
from datasets import DataModule
from lightning_modules.neuconw_system import NeuconWSystem
# pytorch-lightning
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import DeviceStatsMonitor
from pytorch_lightning.profiler import AdvancedProfiler
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from config.defaults import get_cfg_defaults
def main(hparams):
config = get_cfg_defaults()
config.merge_from_file(hparams.cfg_path)
caches = None
pl.seed_everything(config.TRAINER.SEED)
# scale lr and warmup-step automatically
config.TRAINER.WORLD_SIZE = hparams.num_gpus * hparams.num_nodes
config.TRAINER.TRUE_BATCH_SIZE = config.TRAINER.WORLD_SIZE * hparams.batch_size
_scaling = config.TRAINER.TRUE_BATCH_SIZE / config.TRAINER.CANONICAL_BS
config.TRAINER.SCALING = _scaling
config.TRAINER.LR = config.TRAINER.CANONICAL_LR * _scaling
if hasattr(hparams, 'shadow_weight'):
config.NEUCONW.LOSS.shadow_weight = hparams.shadow_weight
system = NeuconWSystem(hparams, config, caches)
data_module = DataModule(hparams, config)
os.makedirs(hparams.save_path, exist_ok=True)
os.makedirs(os.path.join(hparams.save_path, hparams.exp_name, 'ckpts'), exist_ok=True)
checkpoint_callback = \
ModelCheckpoint(dirpath=os.path.join(hparams.save_path, hparams.exp_name, 'ckpts'),
filename='{epoch:d}',
monitor='val/psnr',
mode='max',
every_n_train_steps=config.TRAINER.SAVE_FREQ,
save_top_k=-1)
logger = TensorBoardLogger(save_dir=hparams.save_path,
name=hparams.exp_name,
log_graph=False)
if config.DATASET.DATASET_NAME == 'phototourism' and config.DATASET.PHOTOTOURISM.IMG_DOWNSCALE <= 1:
replace_sampler_ddp = False
else:
replace_sampler_ddp = True
profiler = "simple" if hparams.num_gpus == 1 else None
# profiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
trainer = Trainer(max_epochs=hparams.num_epochs,
callbacks=[checkpoint_callback, ], # DeviceStatsMonitor(cpu_stats=True)],
resume_from_checkpoint=hparams.ckpt_path,
logger=logger,
devices=hparams.num_gpus,
num_nodes=hparams.num_nodes,
accelerator='cuda',
strategy='ddp' if hparams.num_gpus > 1 else None,
num_sanity_val_steps=1,
val_check_interval=config.TRAINER.VAL_FREQ,
benchmark=True,
profiler=profiler,
replace_sampler_ddp=replace_sampler_ddp, # need to read all data of local dataset when config.DATASET.PHOTOTOURISM.IMG_DOWNSCALE==1
gradient_clip_val=0.99
)
trainer.fit(system, datamodule=data_module)
if __name__ == '__main__':
hparams = get_opts()
main(hparams)