-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhand_detector_control_bar.py
80 lines (52 loc) · 2.19 KB
/
hand_detector_control_bar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
# coding: utf-8
# # OPENCV PROJECT
# ## Hand Detector and Control Bar
#
# #### PRESS ESC TO EXIT AND CLOSE THE WINDOW
# In[1]:
get_ipython().system('pip install mediapipe')
# In[ ]:
## Import the necessary libraries
import cv2
import mediapipe as mp
import numpy as np
from IPython.display import display, clear_output
# Function to calculate distance between two points
def calculate_distance(point1, point2):
return np.sqrt((point2[0] - point1[0])**2 + (point2[1] - point1[1])**2)
# Initialize hand tracking
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# Initialize VideoCapture
cap = cv2.VideoCapture(0)
with mp_hands.Hands(min_detection_confidence=0.5, min_tracking_confidence=0.5) as hands:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
continue
# Flip the frame horizontally for a later selfie-view display
frame = cv2.flip(frame, 1)
# Convert the BGR image to RGB
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Process the frame with Mediapipe Hands
results = hands.process(rgb_frame)
if results.multi_hand_landmarks:
# Get landmarks for the first hand (assuming only one hand is in the frame)
landmarks = results.multi_hand_landmarks[0].landmark
# Extract specific landmarks for control (e.g., thumb tip and index finger tip)
thumb_tip = (int(landmarks[4].x * frame.shape[1]), int(landmarks[4].y * frame.shape[0]))
index_tip = (int(landmarks[8].x * frame.shape[1]), int(landmarks[8].y * frame.shape[0]))
# Calculate the distance between thumb tip and index finger tip
distance = calculate_distance(thumb_tip, index_tip)
# Display the distance
cv2.putText(frame, f'Distance: {distance:.2f}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# Display the frame
cv2.imshow('Hand Detector Control Bar', frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the VideoCapture and close all OpenCV windows
cap.release()
cv2.destroyAllWindows()
# In[ ]: