-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
282 lines (212 loc) · 9.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import streamlit as st
import pandas as pd
import numpy as np
import logging
from model import fetch_data, calculate_indicators, calculate_support_resistance, predict_future_prices
from visualizations import (
plot_stock_price, plot_predictions, plot_technical_indicators, plot_risk_levels,
plot_feature_importance, plot_candlestick, plot_volume, plot_moving_averages,
plot_feature_correlations
)
from sklearn.metrics import ConfusionMatrixDisplay
from ui import display_analysis
from logger import get_logger
from dashboard import display_dashboard, display_profile,fetch_stock_profile,display_quarterly_results, display_shareholding_pattern, display_financial_ratios
from llm import display_recommendation #analyze_stock_with_llm
# import argparse
# parser = argparse.ArgumentParser()
# parser.add_argument('--token', required=True)
# args = parser.parse_args()
# API_TOKEN = args.token
logger = get_logger(__name__)
st.title("Stock Analysis and Prediction")
# Sidebar for navigation
st.sidebar.title("Navigation")
# Initialize `page` to "Analytics" by default
if 'page' not in st.session_state:
st.session_state['page'] = "Analytics"
if st.sidebar.button("Analytics"):
st.session_state['page'] = "Analytics"
if st.sidebar.button("Ask to AI"):
st.session_state['page'] = "Ask to AI"
if st.sidebar.button("Dashboard"):
st.session_state['page'] = "Dashboard"
if st.sidebar.button("Profile"):
st.session_state['page'] = "Profile"
page = st.session_state['page']
# Function to fetch and prepare data
def get_data():
ticker = st.session_state.get('ticker')
start_date = st.session_state.get('start_date')
end_date = st.session_state.get('end_date')
try:
data = fetch_data(ticker, start_date, end_date)
if data is not None:
data = calculate_indicators(data)
return data
else:
st.error("Failed to fetch data. Please check the stock ticker symbol and date range.")
return None
except Exception as e:
st.error(f"An error occurred: {e}")
return None
# Display content based on selected page
if page == "Analytics":
st.header("Analytics")
# Data input section
ticker = st.text_input("Stock Ticker", "BHEL.NS")
start_date = st.date_input("Start Date", pd.to_datetime("2020-01-01"))
end_date = st.date_input("End Date", pd.to_datetime("2024-09-04"))
algorithm = st.selectbox(
"Choose an Algorithm",
['Linear Regression','LSTM', 'ARIMA','Decision Tree', 'Random Forest', 'XGBoost', 'CatBoost', 'SARIMA']
)
st.session_state['ticker'] = ticker
st.session_state['start_date'] = start_date
st.session_state['end_date'] = end_date
st.session_state['algorithm'] = algorithm
# Tabs for Analyze and Visualization under Analytics
tab1, tab2 = st.tabs(["Analyze", "Visualization"])
# Analyze Tab
with tab1:
if st.button("Analyze"):
data = get_data()
if data is not None:
display_analysis(data, st.session_state.get('algorithm'))
# Visualization Tab
with tab2:
st.write("### Visualizations")
# Fetch and prepare data for visualization
data = get_data()
if data is not None:
indicators = {
'SMA_50': data['SMA_50'],
'EMA_50': data['EMA_50'],
'RSI': data['RSI'],
'MACD': data['MACD'],
'MACD_Signal': data['MACD_Signal'],
'Bollinger_High': data['Bollinger_High'],
'Bollinger_Low': data['Bollinger_Low'],
'ATR': data['ATR'],
'OBV': data['OBV']
}
# Visualization choices
choice = st.selectbox(
"Choose a type of visualization",
[
"Stock Price","Volume",
"Moving Averages",
"Feature Correlations",
"Predictions vs Actual",
"Technical Indicators",
"Risk Levels",
"Feature Importance",
"Candlestick"
]
)
try:
if choice == "Stock Price":
plot_stock_price(data, st.session_state.get('ticker'), indicators)
elif choice == "Predictions vs Actual":
future_prices, _, _, _, _ = predict_future_prices(data, st.session_state.get('algorithm'))
if future_prices is not None:
st.line_chart(pd.DataFrame({'Actual Prices': data['Close'], 'Predicted Prices': pd.Series(future_prices).values}))
else:
st.error("Failed to fetch predictions.")
logger.error("Failed to fetch predictions.")
elif choice == "Technical Indicators":
plot_technical_indicators(data, indicators)
elif choice == "Risk Levels":
plot_risk_levels(data)
elif choice == "Feature Importance":
plot_feature_importance()
elif choice == "Candlestick":
plot_candlestick(data)
elif choice == "Volume":
plot_volume(data)
elif choice == "Moving Averages":
plot_moving_averages(data)
elif choice == "Feature Correlations":
plot_feature_correlations(data)
except Exception as e:
logger.error(f"An error occurred during visualization: {e}")
st.error(f"An error occurred during visualization: {e}")
else:
st.error("Failed to fetch data. Please check the stock ticker symbol and date range.")
logger.error("Failed to fetch data. Please check the stock ticker symbol and date range.")
elif page == "Dashboard":
st.title("Stock analysis and screening tool for investors in India")
ticker = st.text_input("Enter stock ticker (e.g., TATAMOTORS.NS):").upper()
days = st.sidebar.slider("Select number of days for top movers:", 1, 30, 30)
profile = {}
if ticker:
profile = fetch_stock_profile(ticker)
if profile: # Only display profile if it's not empty
display_profile(profile)
display_quarterly_results(ticker)
display_shareholding_pattern(ticker)
display_financial_ratios(ticker)
else:
st.write("No data available for the ticker entered.")
st.sidebar.write("### Overview")
st.sidebar.write(f"Showing top gainers and losers over the past {days} day(s).")
display_dashboard()
# display_profile()
# # Display the main dashboard
# display_dashboard()
st.write("<div style='background-color: black; color: white; padding: 10px;'>Coming Soon A lot Updates.......</div>", unsafe_allow_html=True)
elif page == "Profile":
st.image("https://via.placeholder.com/150", caption="User Profile Photo")
st.write("### User Profile")
st.write("Name: Nandan Dutta")
st.write("Role: Data Analyst")
st.write("Email: n.dutta25@gmail.com")
elif page == "Ask to AI":
st.title("Ask Stock Recommendation to AI")
st.write("Model: Meta LLaMA 3.1")
# Input fields for the user
ticker = st.text_input("Enter Stock Ticker (e.g., BHEL.NS, RELIANCE.NS):")
start_date = st.date_input("Start Date", value=None)
end_date = st.date_input("End Date", value=None)
if st.button("Get Recommendation"):
if ticker and start_date and end_date:
# Ensure dates are in the correct format
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
st.write(f"Fetching recommendation for {ticker} from {start_date_str} to {end_date_str}...")
try:
# Fetch the recommendation using the LLaMA model
recommendations = display_recommendation(ticker, start_date_str, end_date_str)
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.error("Please enter a valid ticker and date range.")
st.markdown(
"""
<style>
@keyframes blink {
0% { opacity: 1; }
50% { opacity: 0; }
100% { opacity: 1; }
}
.blinking-heart {
animation: blink 1s infinite;
}
</style>
<div style='background-color: #f1f1f1; color: #333; padding: 5px; text-align: center; border-top: 1px solid #ddd;'>
<p>Made with <span class="blinking-heart">❤️</span> from Nandan</p>
</div>
""",
unsafe_allow_html=True
)
# Display animated running disclaimer text
st.write(
"""
<div style='background-color: black; color: white; padding: 10px; border-radius: 5px;'>
<marquee behavior="scroll" direction="left" scrollamount="5" style="font-size: 14px;">
This project is for educational purposes only. The information provided here should not be used for real investment decisions. Please perform your own research and consult with a financial advisor before making any investment decisions. Use this information at your own risk.
</marquee>
</div>
""",
unsafe_allow_html=True
)